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Systems analysis of the genetic interaction
network of yeast molecular chaperones†

Kamran Rizzolo,‡a Ashwani Kumar,‡b Yoshito Kakihara,§a Sadhna Phanse,c

Zoran Minic,c Jamie Snider,d Igor Stagljar,ade Sandra Zilles,b Mohan Babu *c and
Walid A. Houry *af

Molecular chaperones are typically promiscuous interacting proteins that function globally in the cell

to maintain protein homeostasis. Recently, we had carried out experiments that elucidated a

comprehensive interaction network for the core 67 chaperones and 15 cochaperones in the budding

yeast Saccharomyces cerevisiae [Rizzolo et al., Cell Rep., 2017, 20, 2735–2748]. Here, the genetic

(i.e. epistatic) interaction network obtained for chaperones was further analyzed, revealing that the global

topological parameters of the resulting network have a more central role in mediating interactions

in comparison to the rest of the proteins in the cell. Most notably, we observed Hsp10, Hsp70 Ssz1

chaperone, and Hsp90 cochaperone Cdc37 to be the main drivers of the network architecture. Systematic

analysis on the physicochemical properties for all chaperone interactors further revealed the presence

of preferential domains and folds that are highly interactive with chaperones such as the WD40

repeat domain. Further analysis with established cellular complexes revealed the involvement of R2TP

chaperone in quaternary structure formation. Our results thus provide a global overview of the chaperone

network properties in yeast, expanding our understanding of their functional diversity and their role in

protein homeostasis.

Introduction

Molecular chaperones are a highly interactive group of proteins
that are primarily involved in cellular stress responses.1,2 They
are typically tightly regulated to rapidly sense physiological
stresses that eventually engage their chaperone function, for
example, in protein folding, holding, and maturation of sub-
strate clients in different cellular compartments.2 Chaperones
that are conserved across many organisms are classified into
families based on their functional similarities. In the budding

yeast Saccharomyces cerevisiae, there are a total of 67 chaper-
ones: 2 Hsp90s, 14 Hsp70s, 22 Hsp40s, 8 CCTs, 1 Hsp60,
1 Hsp10, 6 prefoldins, 5 ATPases associated with diverse cellular
activities (AAA+), 7 small heat shock proteins (sHsps), and
1 calnexin. In addition, the Hsp70 and Hsp90 families contain
4 and 11 partner proteins, respectively, termed cochaperones.
Here, we refer to chaperones and cochaperones as CCos. Many
biochemical reductionist studies have been performed to
understand individual CCo function and their interaction with
clients, yet such studies do not provide the global view of the
functions performed by the CCo network.

Recently, we published a global systematic network of the CCos
in yeast using two types of high-throughput data:3 (1) genetic inter-
actions (GIs; when mutations in two or more genes combine to
generate an unexpected phenotype) obtained from synthetic genetic
array (SGA) technology,4 and (2) protein–protein interactions (PPIs;
physical interactions between two or more proteins) obtained from
tandem-affinity purification followed by mass spectrometry meta-
analysis from four different large-scale studies.1,5–7 In that work,
22 443 GIs were obtained with 13 704 negative GIs (i.e. double
mutants with a more severe fitness defect than the expected multi-
plicative effect of combining the individual mutants, with the
extreme case being synthetic lethality) and 8739 positive GIs (i.e.
double mutants with a less severe defect in fitness than expected).
In the case of PPIs, we compiled a total of 43 020 interactions.3

a Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1M1,

Canada. E-mail: walid.houry@utoronto.ca
b Department of Computer Science, University of Regina, Regina,

Saskatchewan S4S 0A2, Canada
c Department of Biochemistry, Research and Innovation Centre, University of

Regina, Regina, Saskatchewan S4S 0A2, Canada. E-mail: mohan.babu@uregina.ca
d The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
e Department of Molecular Genetics, University of Toronto, Toronto,

Ontario M5S 3E1, Canada
f Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6,

Canada

† Electronic supplementary information (ESI) available. See DOI: 10.1039/
c7mo00142h
‡ Co-first authors.
§ Present address: Division of Dental Pharmacology, Niigata University Graduate
School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Japan.

Received 30th December 2017,
Accepted 26th February 2018

DOI: 10.1039/c7mo00142h

rsc.li/molomics

Molecular
Omics

RESEARCH ARTICLES

http://orcid.org/0000-0003-4118-6406
http://orcid.org/0000-0002-1861-3441
http://crossmark.crossref.org/dialog/?doi=10.1039/c7mo00142h&domain=pdf&date_stamp=2018-03-16
http://rsc.li/molomics


This journal is©The Royal Society of Chemistry 2018 Mol. Omics, 2018, 14, 82--94 | 83

Network concepts are typically used to understand the proper-
ties of biological networks in the context of single protein–protein
or multi-protein relationships8–10 and to gain insights into
important biochemical functions11 based on the network modu-
larity. These can be generally achieved by analyzing the network’s
topological properties from the large amount of biological data
that are being accumulated by virtue of large-scale experiments
and computational predictions. Since biological networks are
known to be scale-free and unevenly organized, their topological
properties are very powerful in deciphering functional modules12

and in establishing global relationships between the groups of
interacting components in the network. For example, in the case
of chaperones, topological studies performed using PPI networks
revealed their central role as highly-connected proteins (i.e. hubs)
in the cell.13,14 Such is the case of Hsp90 in tumor cells where its
connectivity with a highly rewired proteome has made it an
important drug target for cancer treatments.15 Similarly, the
quantitative proteomic analysis of Hsp70 chaperones SSA1 and
SSB1 deletion mutant strains showed that the cellular protein
concentrations are mostly unchanged as a result of the chaper-
one network structure.16

Despite the aforesaid studies revealing topological roles of indi-
vidual or subgroups of CCos in a cellular network, a more complete
analysis encompassing all CCos has not yet been explored. Here, we
have addressed this by analyzing the CCo GI network to provide a
statistical description of its topology and to identify key CCo and
non-CCo proteins in the network. This analysis is important given
that more than double the deciphered interactions in yeast come
from GIs as opposed to physical interaction studies.17 Our findings
revealed that CCos are critical to shaping the whole yeast genome GI
network and have a pronounced association with protein complexes
throughout the cell likely to modulate their assemblies.

Materials and methods
Topological properties of the whole genome and CCo GI
networks

To characterize the topological properties of the interaction
network, the following parameters were calculated:

Degree centrality (DC) is defined as the fraction of connec-
tions a node v has in the network.

Betweenness centrality (BC) of a node v is the summation of
the portion of all-pairs shortest paths that go through v.

CBðvÞ ¼
X
s;t2V

s s; tjvð Þ
s s; tð Þ

where V is the group of nodes, s(s,t) is the number of shortest
(s,t)-paths, and s(s,t|v) is the total paths passing through some
node v other than s and t.

The closeness centrality (CC) for a node u in the network is
defined as the reciprocal of the average shortest path to u over
all other (n � 1) nodes.

CðuÞ ¼ n� 1

Pn�1
v¼1

d v; uð Þ

where n is the number of vertices that can be reached by u
whereas d(v,u) is the shortest path between u and v. A higher
closeness value produces a higher centrality value of a node in
the network.

The eigenvector centrality measure is defined as follows. Let
A = (ai,j) be the adjacency matrix of the network. The eigenvector
centrality ev of node v is:

ev ¼
1

l

X
k

ak;vek

where eigen value l a 0 is a constant. In matrix form:

le = eA

The normalized centrality parameter is used to obtain an
unbiased combined centrality score of each node. In Fig. 2, we
calculated a normalized centrality score (NCS) by using degree,
betweenness and closeness centrality measures. NCS of a node v is:

NCSv ¼
DCv=DCmaxð Þ þ BCv=BCmaxð Þ þ CCv=CCmaxð Þð Þ

3

where DCv, BCv, and CCv are degree, betweenness, and close-
ness centrality values of node v, respectively, whereas max
represents the highest score of a centrality measure in the
network.

As a control for each centrality score, we bootstrapped
(1000 times) a random sample set of non-CCos of the same size
as the CCo set and performed Wilcoxon–Mann–Whitney test to
calculate a P-value for each iteration compared to the CCo set.
The distribution of P-values between the randomly selected non-
CCo set and the CCos for each centrality score are plotted in
Fig. S1 (ESI†). To reduce the influence of outliers in the P-value
distributions, we highlight the median values for each plot as
they better reflect the overall P-value for each centrality score.

Analyses of non-CCo enrichment in the CCo network and
protein complex enrichment in the SEC63 GIs

To determine non-CCos with a significantly high number of
interactions in the CCo GI network, we calculated a hypergeo-
metric distribution:

P K � kð Þ ¼
Xn
K¼k

h K;N;m; nð Þ ¼
Xn
K¼k

m
K

� �
N �m
n� K

� �

N
n

� �

where k = number of interactions with CCo in the network;
n = number of CCos in the network; m = number of interactions
in the network; N = total number of genes in the network.

To obtain CYC2014 complexes18 that are significantly
enriched with SEC63 interactions from the negative GI, positive
GI and GI profile correlation similarity (GIPC; Table S2, ESI†)
datasets, we used the same formula as described above with the
following variables: k = number of interactions with a CYC2014
complex in the SEC63 GI dataset; n = number of members in a
CYC2014 complex; m = total number of SEC63 interactions in a
particular dataset; N = total number of genes in the particular
GI dataset.
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Physicochemical properties, protein abundance and protein
domain enrichment analyses

Six properties were gathered for all proteins (CCo and non-CCo)
in the GIPC, negative GI, and positive GI datasets: (1) molecular
weight, (2) isoelectric point (pI), (3) hydrophobicity score,19

(4) instability index20 and (5) aliphatic index,21 and (6) protein
abundance in the cell.22 Protein domain enrichments were per-
formed by gathering all domains of CCo and non-CCo proteins
from the Pfam database23 followed by selection of the top most
enriched (P r 0.05) domains. Hierarchical clustering of enriched
domains and spectral count scores from mass spectrometry (MS)
data was performed using the uncentered Pearson correlation
metric and the centroid linkage method from the Cluster 3.0
program.24 Generation of the heat maps for enriched domains
was performed in the Java Treeview program.25 CCo gene distri-
bution for each dataset, significant non-CCo connectivity in
the CCo network, interactor physicochemical property distri-
bution plots and bar-plots of protein complex analyses were
performed in the program JMPs, Version 9 (SAS Institute Inc.,
Cary, NC).

To determine the number of interactions between CCo and
complexes in the CYC2014 catalog,18 we calculated the Jaccard
index for CCoi and CYCj. We then summed the Jaccard indices
over all complexes for Fig. 6 or over all CCos for Fig. 9:

Sum of Jaccard indices

¼
X

all i;all j

Intði; jÞ
Total Int CCoi þMem CYCj � Intði; jÞ

� �

where Int(i,j) = number of common interactions between CCoi

and CYCj; total IntCCoi = total interactions of CCoi; Mem CYCj =
total number of subunit members of CYCj.

Pulldowns and mass spectrometry

To carry out the pulldown experiments described in Fig. 7B, the
following strains were generated:

YK199 (S288C background, MATa his3D1 leu2D0 met15D0
ura3D0 CBF5-FLAG::KANMX), YK200 (S288C background, MATa
his3D1 leu2D0 met15D0 ura3D0 NOP10-FLAG::KANMX), YK201
(S288C background, MATa his3D1 leu2D0 met15D0 ura3D0
GAR1-FLAG::KANMX), YK202 (S288C background, MATa his3D1
leu2D0 met15D0 ura3D0 NHP2-FLAG::KANMX). The following
strain was obtained from Open Biosystems BY4741 (S288C back-
ground, MATa his3D1 leu2D0 met15D0 ura3D0).

Yeast cells containing specific ORFs having a C-terminal
3�FLAG-tag were grown in YPD medium to log phase
(OD600 E 0.6) at 30 1C. Cell pellets were frozen and then lysed
using a coffee grinder cooled with dry ice. Protein complexes
were purified using FLAG antibody resin (A2220; Sigma-Aldrich)
according to established protocols.26 The isolated proteins were
digested with trypsin and then subjected to an Orbitrap mass
spectrometer. The resulting MS/MS spectra were searched
against the protein coding sequences of the derivative strain
using the SEQUEST search engine. High-confidence matches
were then evaluated using spectral counts and probability

scores generated by the STATQUEST algorithm. In order to
quantify the MS data, we used the normalized spectral abun-
dance factor (NSAF) method as previously described,27 which
utilizes spectral counts normalized to protein length and the
total spectral count in each experiment.

Membrane yeast two-hybrid (MYTH) for Sec63

MYTH mapping of Sec63 interactors was carried out as described
before.28 The yeast MYTH reporter strain THY.AP4 expressing an
endogenously tagged Sec63 encoding the C-terminal fragment of
ubiquitin (Cub) fused to an artificial LexA-VP16 transcription
factor was used. Reporter cells expressing the tagged bait were
screened using a high-efficiency transformation protocol against
the cDNA and the genomic prey libraries, which are expressing
proteins that are fused to the N-terminal fragment of ubiquitin
(NubG). Subsequently, cells that are expressing both the bait and
prey proteins were identified by growth selection for the MYTH
reporter system on nutrient-deficient media. Selected plasmid
DNA construct expressing prey interactors were amplified and
identified by sequencing. These candidate preys were then
retested in MYTH for interaction with Sec63 along with the
vacuolar ABC transporter Adp1, which is an unrelated control
bait protein. Sec63-specific interacting prey proteins were
selected as those that again interacted with Sec63 but did not
interact with Adp1. The list of specific prey proteins interacting
with Sec63 are given in Table S1 (ESI†).

Results
Topological architecture of the CCos in the whole yeast genome
GI network

To find distinct features of the CCos in the GI network,4 we
compared the topology of CCos against all non-CCo yeast genes
(Fig. 1). We used four well-established centrality measures:
degree, eigenvector, betweenness, and closeness (see Methods
for details). The degree centrality of a node is typically calcu-
lated on the basis of number of links a node has in the network.
The eigenvector centrality is an extension of degree centrality
but differs by not awarding the same weight to all connections.
It is based on the notion that a node is important if it is linked
to other important nodes. The betweenness centrality is calcu-
lated by counting the number of times a node acts as a bridge
along the shortest paths between two other nodes in the net-
work. Lastly, a node’s closeness centrality is defined as the
average shortest distance between a given node and all other
nodes in the network.

As shown in Fig. 1, CCo genes have significantly higher
centrality scores for all four parameters (P o 0.01). In addition,
as a control, we bootstrapped (1000 times) using a randomly
selected sample sets of non-CCos having the same size as the
CCo set. The different centrality scores were calculated for each
randomly sampled dataset with respect to CCo (see Methods),
resulting in P-value based distributions (Fig. S1, ESI†). The
median P-values obtained were between 0.029 and 0.074
(Fig. S1, ESI†), suggesting that the centrality scores for the
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CCo dataset are not random. Indeed, 10% of CCos ranked
highest in all centrality scores parameters with the top three
being HSP10, the Hsp90 cochaperone CDC37, and the Hsp70
LHS1. This suggests that overall, CCos have a greater influence
in the network by playing a more central role in mediating
interactions among numerous, less connected genes, reflecting
their critical functions in the cell.

Overview of CCo centrality in the GI network

Biological networks are intrinsically inhomogeneous with certain
genes having greater connectivity and are indispensable com-
pared to others with less connections.29 Many CCos have been
found to be highly interactive among each other or with other
proteins throughout the network.1,3 To characterize the topo-
logical features driven by individual CCo gene in the GI net-
work, we computed the degree, betweenness, closeness, and the
normalized centrality measures for each individual CCo (Fig. 2).
We find that the essential HSP10 cochaperonin of the mito-
chondrial matrix chaperone Hsp60 (orthologue of bacterial
GroEL) has the highest degree and betweenness centrality in
both the positive and negative GI datasets, and the highest

closeness centrality in the positive GI dataset (Fig. 2). This
makes the essential HSP10 one of the most connected CCo
hubs and, based on its high betweenness centrality, it serves as
a bridge by bringing the denser subnetworks together. Inter-
estingly, despite the fact that Hsp10 acts as the cap for Hsp60,
HSP60 has less than half of the normalized centrality value of
HSP10. This could suggest that Hsp10 has functions indepen-
dent of Hsp60.

In addition, we find the Hsp90 cochaperones CDC37 and
CPR7, the Hsp70 (Hsp110 subfamily) SSE1 and LHS1, the Hsp70
SSZ1, and the prefoldin GIM3 to also have high betweenness
and closeness centralities compared to other CCos in the differ-
ent datasets. This suggests that, they also connect subnetworks
and are part of closely connected clusters.

The GI profile of a given gene is composed of a set of positive
and negative GIs with other genes in the genome. Genes whose
GI profiles correlate tend to be part of the same complex or
function in similar pathways.4 Consistent with this, we find the
Hsp70 SSZ1 with the highest degree centrality value as well
as among the highest betweenness centrality values and con-
sequently to be the most central CCo in the GI profile correlation

Fig. 1 Topology of the CCos in the whole yeast genome GI network. Distribution of the CCo topology parameters compared to all genes and non-CCo
genes in the whole yeast genome GI network for: (A) degree centrality, (B) eigenvector centrality, (C) betweenness centrality, and (D) closeness centrality
parameters. CCos have higher centrality compared to the whole genome network (Wilcoxon–Mann–Whitney test to calculate P-value).
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Fig. 2 Topology of the CCos in the CCo network. Boxplot distributions of: (A) degree centrality, (B) betweenness centrality, (C) closeness centrality,
and (D) normalized centrality of the CCo gene’s negative GI, positive GI and GIPC in the CCo network. Outlier genes are labeled.

Fig. 3 Top non-CCo genes associated with CCos. Scatter-plot of non-CCo interactors enriched in the CCo network. Non-CCo genes that have a
significant (FDR o 0.05) degree of connectivity are highlighted in red and are labelled. Genes with an FDR 4 0.05 are colored in grey and six of those
genes with the highest number of interactions in the CCo network are labelled.
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similarity (GIPC) network (Fig. 2A, B and D). This chaperone is
largely involved with the ribosome-associated complex (RAC),
but has also been shown to be involved in various other cellular
processes such as transcriptional regulation, stress response,
lipid metabolism, and ER-associated degradation (ERAD).30

In summary, HSP10, SSZ1, CDC37, CPR7, GIM3, SSE1, and
LHS1 are pivotal players giving shape to the CCo GI network’s
topology.

GI network reveals the highly associated CCo clients in yeast

To systematically identify highly-dependent CCo clients, we
quantified the association of non-CCo genes with CCos by

looking at their degree connectivity by GIs. Because a highly
connected non-CCo gene can have many connections with both
CCos as well as non-CCos, we looked for interactors that have
significantly (FDR E 5%) higher connectivity to the CCo network
versus the rest of the yeast genome. This framework allowed us to
identify 28 non-CCo genes (from a total of 4503 ORFs) with
strong association to chaperones (Fig. 3). These include genes
involved in: cytoskeleton (TUB3, MYO5, SHE4, RBL2, MSS4,
PRK1), metabolism (MTL1, ACB1, GPH1, TPS1, COQ1), mito-
chondria (DML1, IDH1, PNT1, YME1), ER processes (SEC66,
SAY1, CDC48, ERV46), poorly characterized functions (HGH1,
PET10, FYV1, YDR149C), chromatin remodeling (TEL2, CIN4),

Fig. 4 Physicochemical properties of CCo interactors. Scatter plots of molecular weight, isoelectric point (pI), hydrophobicity as GRAVY score,19 instability
index,20 aliphatic index,21 and CCo protein interactor abundance in the cell.22 Average property values for interactors of individual CCos from the negative
GI, positive GI, and GIPC datasets are shown. CCos are color coded based on their corresponding family as indicated. Mean values are indicated and marked
with a dashed line and the standard deviations are in parentheses. The average property value for all yeast proteins is also shown.
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cell cycle (CDC26), Golgi-related (RUD3), and the heat-shock
transcription factor (HSF1) processes.

Interestingly, the two most CCo-associated genes, HGH1 and
PET10, have putative annotated functions related to ribosomal
and lipid processes, respectively. As well, HGH1 and PET10 have
significant (PCC Z 0.1) GIPC with the Hsp90 CCo CPR7 and the
Hsp70 SSE1, respectively. Another interesting observation is
that CDC48, which itself could be considered a chaperone but
was not annotated as such in our analysis, is very strongly
connected to many other chaperones (Fig. 3). We find CDC48 to
have significant (PCC Z 0.1) GIPC to various subunits of the
proteasomal 19S regulatory particle, the lid, and 20S subunits.
Indeed, the AAA+ Cdc48 is involved in a variety of degradation
pathways in the cell including ERAD, inner-nuclear-membrane-
associated degradation (INMAD), mitotic spindle disassembly,
and ribosome-associated degradation, among others. These results
suggest that Cdc48 is associated to CCo functions related to
protein homeostasis.

Global view of the physicochemical properties of CCo clients

Since the negative GI, positive GI, and GIPC similarity were
identified for CCo interactors, we next analyzed the physicochemical

properties of these interactors to understand the preferred
properties CCos may have towards client proteins. Specifically,
6 physicochemical properties were tested, namely (Fig. 4):
(1) molecular weight, (2) isoelectric point (pI), (3) hydrophobi-
city score,19 (4) instability index,20 (5) aliphatic index,21 and
(6) protein abundance in the cell.22 In each of these properties, the
average value and standard deviation for each CCo gene in all three
GI datasets were computed. In addition, the average physico-
chemical property values of the yeast proteome are indicated
(Fig. 4). We find that CCos generally interact with genes whose
encoded proteins have similar properties to the rest of the pro-
teome. This likely shows the breadth and promiscuity of the CCos.

Overview of protein domain enrichment in CCo interactors

We performed enrichment analyses (P r 0.05) for protein
domains using Pfam database23 of CCo interactors in the three
GI datasets. The domain enrichments were calculated for each
individual CCo by obtaining the top domains present in the set
of interactors for that CCo. Subsequently, hierarchical clustering
was done to determine domains enriched for multiple CCo
interactions. Only such domains that interact with at least three
CCos are shown (Fig. 5).

Fig. 5 Protein domains enriched in CCo interactors. Hierarchically clustered map of enriched (P o 0.05) Pfam protein domains of CCo interactors
obtained from (A) negative GI, (B) positive GI, and (C) GIPC are shown for each CCo. Only Pfam domain clusters interacting with at least three CCos
are shown.
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Interestingly, CCo interactors in both the negative GI and
the GIPC datasets are enriched for WD40 repeat domains
that are involved in variety of functions ranging from signal
transduction and transcription regulation to cell cycle control
and apoptosis (Fig. 5A and C). WD40 domains have been
previously observed to be enriched in physical interactions
with the CCT chaperone complex.31,32 Domains enriched
(P r 0.05) in the positive GI dataset mainly consist of ribosomal,

RNA polymerase-related, and proteasome subunit domains
(Fig. 5B). Indeed, a strong positive GI bias has been previously
observed in genes whose proteins are involved in proteostasis,
including chaperones and the proteasome.4 Furthermore, this
was largely due to genetic suppression, where a fitness defect
associated with a hypomorphic temperature sensitive allele
of an essential gene was suppressed by a second mutation in
a proteasome-encoding gene.

Fig. 6 Interaction of CCos with protein complexes. The sum of Jaccard indices for each CCo interaction with manually curated CYC2014 protein
complexes18 were calculated for (A) negative GI, (B) positive GI, and (C) GIPC datasets as described in the methods. SEC63, SSB1 and SSA1 are highlighted.
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Role of CCos in protein complex assembly

In addition to folding proteins and promoting protein stability,
several CCos have been found to facilitate protein complex
assembly. To obtain a global view of what CCos might be
involved in protein complex assembly, the interaction of CCos
with subunits of the manually curated protein complexes given
in the CYC2014 catalogue18 were assessed as described in the
methods. This was done for the negative GI, positive GI, and
GIPC datasets.

As shown in Fig. 6, the different datasets resulted in differ-
ent ordering of the CCos; however, CCT, the prefoldin complex
and various Hsp40s typically have high numbers of interactions
with the subunits of established complexes. Interestingly, for
the GIPC dataset, which might more closely reflect physical
interactions,33 the AAA+ Rvb2, the prefoldins, Hsp40s Ydj1 and
Jjj1, and the Hsp90 cofactor Pih1 have the highest interactors
with complexes (Fig. 6C).

Rvb2 and Pih1 are members of the R2TP chaperone complex
that also contains Rvb1 and Tah1 proteins and indeed has been
proposed to be involved in complex assembly.34,35

The results shown in Fig. 6 were further verified for two
specific cases. In the first illustrative example, we performed
MYTH28 using Sec63, which is an essential membrane subunit

of the ER translocon containing a J domain, as a bait and also
has a high number of interactions with complexes as shown in
Fig. 6. A total of 49 prey proteins were obtained in MYTH (Table S1,
ESI†) with 12 also found to have a significant GI with SEC63. These
12 proteins are members of eight different protein complexes
from the CYC2014 catalog that are significantly (P r 0.03)
interacting with SEC63 (Fig. 7A and Table S2, ESI†) where one,
the Ssh1 translocon complex, is present in all three datasets
and the rest are distributed between the negative GI and GIPC
(Fig. 7A). Among these complexes, we find Sec62/Sec63, Ssh1,
and signal peptidase complexes as known interactors of Sec63,
validating the protein complex interactions obtained in GIPC
and negative GIs.

In the second example, we note that SSA1 shows no complex
interactions in the GIPC dataset (Fig. 6A), while SSB1 has a
relatively high number of interacting complexes. Also, SSB1 has
more complex interactors than SSA1 in both the negative GI
and positive GI datasets (Fig. 6A and B). Ssa1 is a cytoplasmic
Hsp70 that is constitutively expressed and is involved in protein
folding and translocation, while the Hsp70 Ssb1 is primarily
a ribosome associated chaperone largely involved in nascent
chain folding and assembly. Hence, generally, Ssb1 seems to be
more involved in complex assembly than Ssa1. To further verify

Fig. 7 Experimental validation of Sec63, Ssb1 and Ssa1 interactions with protein complexes. (A) Venn diagram showing the distribution of significant
SEC63 interacting protein complexes (P o 0.03) from CYC201418 present in the negative GIs, positive GIs and GIPC datasets. Protein complexes that
contain prey proteins identified in the Sec63 MYTH are listed. (B) Proteomic discovery of interactors of endogenous C-terminally FLAG-tagged box
H/ACA proteins: Gar1, Nhp2, Nop10, and Cbf5. Bound proteins were identified by mass spectrometry and the relative amounts of each protein were
calculated using NSAF values.27
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this observation, we pulled down protein components of the
box H/ACA snoRNP complex, which is involved in pseudo-
uridylation of pre-rRNA and is composed of a distinct H/ACA
RNA and a set of four highly conserved proteins: Cbf5, Nop10,
Gar1, and Nhp2.36 The pull-down assays were carried out using
strains expressing endogenously FLAG-tagged box H/ACA proteins
(Fig. 7B). The results show that the majority of prey proteins are
involved in RNA processing and translation pathways. Importantly,
we find Ssb1 interacting with the four box H/ACA proteins, while
Ssa1 interacts with only one (Cbf5; Fig. 7B). This is consistent
with the result of Fig. 6.

Finally, to gain further insights into the complexes inter-
acting with the R2TP complex, we plotted the complexes that
are in common between PIH1 and the other member subunits
of R2TP from the GIPC dataset (Fig. 8). Pih1 is considered as
the main defining subunit of R2TP.34 We find that 52% of PIH1
complexes interact with other members of R2TP, among these
complexes are ribosomal/translation (large and small subunits,
Npa2p, mRNA CFI, Noc1/2, tRNA synthase complexes), cyto-
skeleton (CBF3 and RSC complexes), transcription factors (TFIII,
TFIID, TFIIF complexes), chromatin remodeling (Ino80, nuclear
condensin, nucleotide excision repair, capping complexes),
spliceosomal (commitment complex), RNA pol II complex,
signaling (TORC1 complex), mitochondrial (PAM and sorting
and assembly machinery complex). Taken together, this highlights

the proposed function of R2TP in the assembly of many different
types of complexes.

In addition to finding that some CCos tend to preferentially
interact with certain protein complexes, we looked at the com-
plexes that are most associated with CCos. To do this, we selected
the top 30 complexes highly interactive with CCos (based on
Jaccard indices) from the negative GI, positive GI, and the GIPC
datasets, and then ranked them from highest to lowest based on
GIPC Jaccard index values (Fig. 9). Indeed, we find that the top
ranked CCo-associated complexes are involved in protein synthe-
sis (e.g. large and small ribosomal subunits, Kornbergs mediator
SRB complex, and Rpdl3) and protein degradation (e.g. protea-
somal 19/22S regulator complex, and 20S proteasome among
others). This highlights the central role of CCos in maintaining
protein homeostasis in the cell. Interestingly, despite the differ-
ences seen between negative and positive GIs in the whole yeast
genome, we find CCos to interact with similar protein complexes
throughout the three datasets (Fig. 9).

Discussion

Here, we performed a comparative analysis of the topological
properties of CCos in the GI network and found CCos to form a
unique group of genes with significant centrality in yeast (Fig. 1).

Fig. 8 Complexes interacting with R2TP proteins. Complexes interacting with PIH1, PIH1 & RVB2, PIH1 & RVB1, and PIH1 & TAH1 in the GIPC dataset are
listed based on Jaccard indices.
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Consistent with other biological networks,9 the topological properties
of the CCo network is likewise a scale-free network, which is a con-
nectivity distribution following a power-law and is characterized by
hub genes playing an important role in keeping the whole network
together.8,9 The analysis revealed that HSP10, SSZ1, CDC37, CPR7,
GIM3, SSE1, and LHS1 are key genes found to have the highest
normalized centrality measures among all CCos in the negative and
positive GIs (Fig. 2). This suggests that they are responsible for
linking subnetworks or complexes within the chaperone network.

To get detailed information of the client proteins found to
interact with CCos in the network, we looked at the non-CCo

genes that had a significant (FDR E 5%) degree of association
with CCo genes versus the rest of the genes (Fig. 3). 28 inter-
acting genes were identified whose proteins have a myriad of
biological functions involving cytoskeleton, metabolism, cell cycle,
and mitochondrial processes. Interestingly, most of the top CCo
interacting genes were found to encode for proteins with an
undetermined function in particular HGH1 and PET10, which
have high GIPC scores with CPR7 and SSE1 CCos, respectively.

Our comprehensive analysis of the physicochemical properties
of CCo interactors (Fig. 4) highlights the promiscuity of CCos,
showing no particular bias towards any property. Furthermore,

Fig. 9 CCo-associated complexes. The sum of Jaccard indices for each CYC2014 protein complex18 with CCos were calculated for negative GI,
positive GI, and GIPC datasets as described in the methods. Complexes are ranked from highest to lowest based on sum of Jaccard indices from the
GIPC dataset.
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interactor protein domain enrichment analysis (Fig. 5) high-
lights distinct CCo clusters, showing biased preference for
WD40, actin-related and proteasomal domains. We then looked
at CCo–protein-complex interactions in our GI datasets and
found that, although many CCos have a GI with a known yeast
complex, the GIPC dataset was a better predictor of such inter-
actions (Fig. 6) as verified experimentally (Fig. 7). The R2TP
complex was found to be one of the highest interactor of protein
complexes, highlighting its putative function as a scaffolding
chaperone.35 CCos are also found to be highly associated with a
variety of complexes in an unbiased manner in terms of the three
GI datasets used. Taken together, by analyzing our recently
generated yeast GI chaperone network,3 this work provides a
step towards understanding the overall chaperone cellular net-
work architecture.
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