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Abstract

We provide computational protocols to identify chaperone interacting proteins using a combination of both
physical (protein–protein) and genetic (gene–gene or epistatic) interaction data derived from the published
large-scale proteomic and genomic studies for the budding yeast Saccharomyces cerevisiae. Using these
datasets, we discuss bioinformatic analyses that can be employed to build comprehensive high-fidelity
chaperone interaction networks. Given that many proteins typically function as complexes in the cell, we
highlight various step-wise approaches for combining both the genetic and physical interaction datasets to
decipher intra- and inter-connections for distinct chaperone- and non-chaperone-containing complexes in
the network. Together, these informatics procedures will aid in identifying protein complexes with distinc-
tive functional specializations in the cell that yield a very broad and diverse set of interactions. The described
procedures can also be leveraged to datasets from other eukaryotes, including humans.

Key words Chaperone network, Functional enrichment, Genetic interactions, Physical interactions,
Protein complexes

1 Introduction

Molecular chaperones are key players of cellular protein folding and
assembly [1, 2]. Chaperone proteins are found in all cellular com-
partments and are involved in numerous physiological processes.
Typically, chaperones are grouped into families depending on
sequence similarity and function. The major chaperone families in
the budding yeast Saccharomyces cerevisiae are 2Hsp90s, 14Hsp70s,
22 Hsp40s, 8 CCTs, 1 Hsp60, 1 Hsp10, 6 prefoldins, 5 ATPases
associated with diverse cellular activities (AAA+), 7 small heat-shock
proteins (sHsps), and 1 calnexin (total of 67 chaperones). Addition-
ally, the Hsp70 and Hsp90 chaperones function with 4 and 11
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partner proteins termed cochaperones, respectively [3]. Despite
many mechanistic and functional studies on both chaperones and
cochaperones (CCos), the spectrum of cellular substrates and cellu-
lar functions they mediate remains largely incomplete. Hence, to
obtain a better view of the division of labor among molecular
chaperones in the cell, it is necessary to study them at a global
systems level.

The use of proteomic methods has become a key tool to study
phenotypes in cells by mapping physical (protein–protein) and
genetic (gene–gene or epistatic) interaction networks. Typically,
experiments to map physical interactions involve three essential
steps: (1) separation and isolation of proteins; (2) the acquisition
of sequence information for protein identification; and (3) database
utilization for downstream analysis [4]. While protein–protein
interactions (PPIs) can be mapped using various proteomic
approaches in many model organisms such as human and yeast
[5–7], the most standard techniques used to perform large-scale,
systematic measurements of PPIs involves precision-based mass-
spectrometry (MS)methods [8]. For instance, PPIs can be obtained
by affinity purifying the endogenously tagged bait protein and then
identifying co-purifying interactors by tandem MS/MS.

On the other hand, large-scale genetic interaction (GI) data
have also been used to unmask gene and protein organization in the
cell. Most insights into genetic interaction networks have been
gained from the work done in the budding yeast [9], Gram-
negative bacteria [10, 11], Gram-positive bacteria [12, 13], and
other species [14–16]. To study GIs in yeast, double mutant strains
are systematically created by mating a resistance-marked “query”
deletion mutant strain against an array of single-gene deletion
mutants typically marked with kanamycin using synthetic genetic
analysis (SGA) technology [9, 17]. Such methodology allows for a
quantitative assessment of the relative fitness of a double-mutant
meiotic progeny using the GI scores, which are further categorized
into aggravating (negative or synthetic lethal) or alleviating (posi-
tive or buffering) GIs. Aggravating interactions occur when the
double-mutant fitness is lower than the expected for the two single
mutants and may reflect compensatory pathways. The most
extreme type of aggravating GIs is referred to as “synthetic lethal”
where the double-mutant (compared to single mutants) does not
grow at all. In contrast, alleviating interactions occur when the
double-mutant fitness is greater than that expected for the two
single mutants. For instance, this scenario can occur when genes
function in the same nonessential pathway or complex. Both types
of GIs from the network can be organized in a two-dimensional
hierarchical clustering, where clusters are formed from the query
genes according to the overlap of their interactions with the array
genes. Sets of genes either with similar GI scores (positive or
negative) or those functioning within the same pathway

276 Ashwani Kumar et al.



(or subunits within a complex) tend to cluster together. Further-
more, the GI profile similarity provides a potential biological func-
tion for an uncharacterized gene based on its GI profile similarity
with known genes.

Using the PPI and GI frameworks, our group published in
2005 a comprehensive physical and genetic analysis of the Hsp90
chaperone interaction network, showing a broad role of the cha-
perones in many distinct cellular pathways [18, 19]. Subsequently,
in 2009, we published a yeast chaperone physical interaction atlas
for 63 chaperones [20], which allowed us to uncover a clear dis-
tinction between chaperones that are promiscuous and chaperones
that are functionally specific. The analysis indicated the presence of
cellular hot spots of chaperone interactions in the cell. Recent
efforts by our groups have also concentrated on building a com-
prehensive chaperone and cochaperone (CCo) interaction network
using a combination of PPI and GI data. The integration applica-
bility of various data types in network biology can provide a multi-
dimensional approach to the study of proteomics [21]. This is very
useful for CCos given that they are typically promiscuous in their
interactions. The use of both physical and genetic data types pro-
vides information on inter- and intra- CCo complex interactions
that would otherwise be missed by using one single approach.

In this chapter, we provide detailed computational protocols
and source codes to build a comprehensive interaction network
based on PPI and GI data. Most of our work has concentrated on
chaperones and their cochaperones, but the described algorithms
can be applied to networks with proteins involved in any other
functions.

2 Methods

The protocols provided demonstrate various computational
methods to determine functional relationships among genes and
proteins. We also describe approaches to integrating similar (e.g.,
protein interactions from different studies) as well as different (e.g.,
proteomic and genomic) biological data. Various sources of protein
interactome and computational tools are provided below along
with relevant analyses. The algorithms have been provided in R
code (https://www.r-project.org), which is a language for statistical
computing and graphics.

2.1 Construction

of the Chaperone

Genetic Interaction (GI)

Network

SGA-based large-scale screening is the most widely used approach
to identifying genetic interactions (i.e., epistatic relationships)
between genes. Briefly, a GI between two genes is estimated by
comparing the growth fitness defects of the strains having single-
gene deletion mutants versus strains with both genes deleted.
The process of construction and quantification of growth fitness
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of all three mutants (two single and one double) pertaining to two
genes is described in [22]. The SGA score for a gene pair is calcu-
lated using the following multiplicative model [23].

SGA Score ¼ WAQ�(WA �WQ).

where WAQ, WA, and WQ are the double, single array, and single
query mutant growth fitness values, respectively. A statistical confi-
dence measure (p-value) is assigned to each interaction based on a
combination of the observed variation of each double mutant
across four experimental replicates and estimates of the background
lognormal error distributions for the corresponding query and
array mutants [22]. The two criteria of, for example, SGA scores
� |0.08| and p-value <0.05 are used to evaluate the strength of a
GI. Such GIs are then combined to construct a GI network. In the
case of multiple testing (gene pair tested multiple times in different
batches) or reciprocal redundancy (gene pair tested as both array-
query as well as query-array), the SGA score for that pair with best
p-value is selected. A succinct schematic description of the GI
network construction is shown in Fig. 1.

2.2 Quantifying CCo

Interaction Densities

CCos help thousands of substrate proteins fold, assemble, and
traffic appropriately. Consequently, CCos are expected to have, on
average, a higher number of GIs in comparison to the rest of the
yeast genes. To confirm this supposition, we can compare the GI
density distribution of CCos with that of all other genes in the
whole-genome network [22].

#R script to generate density distribution of the GIs of CCos

versus rest of the genes.

# Importing the input file

data <- read.table(file.choose(),header¼T,sep¼"\t")

# Importing the required R libraries

Fig. 1 A flowchart summarizing the construction of CCo GI network extracted from the genome-wide double
mutant growth fitness data
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library(ggplot2)

library(reshape2)

attach(data)

data.m <- melt(data)

p <- ggplot(aes(x¼value, colour¼variable), data¼data.m)

p + geom_density() +

theme_bw() + theme(panel.grid.major ¼ element_blank(),

panel.grid.minor ¼ element_blank(), axis.text.x ¼
element_text(angle¼0),legend.position ¼ c(0.8, 0.8)) +

scale_x_continuous(breaks ¼ round(seq(0, 1000, by ¼ 100),1),

name¼"Number of interactions", expand ¼ c(0, 0)) +

scale_y_continuous(breaks ¼ seq(0,0.0035,0.0005), limits¼c

(0,0.004), name¼"Density", expand ¼ c(0, 0)) +

labs(colour ¼ "Genes") + annotate(geom¼"text", x¼400,

y¼0.0015, label¼"italic(P) < 0.02", parse¼TRUE, color-

¼"black") +

# To add lines to represent the average number of GIs of two

gene sets. For example, 160 and 80 for CCos and all other

genes, respectively.

geom_vline(xintercept ¼ 80, size ¼ 0.5, colour ¼ "black",

linetype ¼ "dashed") + geom_vline(xintercept ¼ 160, size ¼
0.5, colour ¼ "black",linetype ¼ "dashed")

2.3 Analysis of GI

Network

2.3.1 Clustering of GI

Profiles

Two genes are considered to have similar GI profiles when their set
of positive and negative GIs are significantly alike. Two genes with
similar profiles can, therefore, be considered functionally associated
[22]. A very powerful way to organize genes according to their GI
profiles is by applying two-dimensional (2-D) hierarchical cluster-
ing. Conceivably, genes pertaining to same pathways and/or com-
plexes are more likely to cluster together. 2-D hierarchical
clustering can be performed by using a standalone tool called
Cluster 3.0 which can be downloaded from http://bonsai.hgc.jp/
~mdehoon/software/cluster/software.htm. A detailed manual
explaining how to use Cluster 3.0 is also provided. Obtained
images can then be visualized in the form of a heatmap using the
Java TreeView tool (http://jtreeview.sourceforge.net/). The
strength of this approach lies in the functional prediction of genes
for which little or no information is available in the literature (also
known as orphan genes). If a well-annotated gene is clustered
together with an orphan gene through the guilt-by-association
principle [24], it can be proposed that those two genes have similar
molecular functions.

2.3.2 Bioprocess

Enrichment in the GI

Network

A bioprocess represents a group of genes that delineate a series of
events achieved by one or more coordinated assemblies of molecu-
lar functions. The following analysis can be performed to determine
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bioprocesses that are significantly enriched for GIs in the GI net-
work indicating their importance. If NETn is the number of genes
in the GI network whereas BPn is the number of genes in a
bioprocess, we calculate four numbers:

1. The number of observed interactions for genes in a bioprocess G
(BPintobs)

u; vð Þ∈E Gð Þf j u∈V BPð Þ∨ v∈V BPð Þj g j
here, u and ν are two of the all (V) genes in the BP and E represents
the edges (interactions) in the network.

2. The maximum possible number of interactions for genes in a
bioprocess G (BPintmax)

BPn NETn � BPnð Þ þ BPn BPn � 1ð Þ=2

3. The number of actually observed interactions in the GI network
G (NETintobs)

u; vð Þ∈E Gð Þf j u∈V Gð Þ∨ v∈V Gð Þj g j

4. The maximum possible number of interactions in the GI net-
work G (NETintmax)

NETn NETn � 1ð Þ=2

#R script to calculate enrichment

#Typically, large-scale GI studies involve genes from many

bioprocesses. Assuming that there is an input file containing

BPintobs, BPintmax, NETintobs and NETintmax values for each

bioprocess separated by tab delimiters.

# Importing the input file

data <- read.table(file.choose(),header¼T,sep¼"\t")

# Function to calculate hypergeometric distribution based

p-values

data.P <- phyper(data$BPintobs, data$BPintmax, data$NETintobs -

data$BPintmax, data$NETintmax, lower.tail ¼ FALSE)

# Function to calculate corrected p-values, i.e., false dis-

cover rate (FDR)

data.FDR <- p.adjust(data.P, "fdr")

# Joining the p- and FDR values to the input file

data.P.FDR <- cbind(data, data.P, data.FDR)

# Exporting the calculated values

write.table(data.P.FDR, "Data-P_FDR.txt", sep¼"\t")

In general, a bioprocess with p-value (or FDR) < 0.05 is
accepted as enriched.
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2.3.3 Bioprocess

Crosstalk in the GI Network

Significance of the observed GIs between two bioprocesses can be
evaluated using Fisher’s Exact test. For that, we make a contin-
gency Table 1:

#Assuming that there is an input file containing BP1, BP2, A,

B, C and D values for each bioprocess pair separated by tab

delimiters, the R script to calculate bioprocess pair enrich-

ment (p-value) is

data <- read.table(file.choose(),header¼T,sep¼"\t")

get_fisher <- function(data){

mat <- matrix(as.numeric(data[c(3:6)]),nrow¼2, ncol¼2)

f <- fisher.test(as.table(mat), alternative¼"greater")

return(c(df[1], f$p.value))

}

P.values <- apply(df, 1, get_fisher)

As described above, p-value corrections can be performed on
the obtained p-values. Generally, a bioprocess pair with p-value
(or FDR)< 0.05 is accepted as enriched. Similarly, we can compute
crosstalk enrichment between CCo families.

2.3.4 Building the CCo GI

Profile Correlation

Similarity Network

The GI profile of a given gene is composed of the list of positive and
negative GIs involving that gene across the whole genome. A
strong correlation in the GI profile of two genes should indicate
high similarity in the pattern of their genetic interactions with other
genes in the genome, suggesting similar molecular function or
pathway/complex [22]. This property can be used to assess the
connectivity between CCos in the cell by building a GI profile
correlation similarity network. The mathematical formula to calcu-
late the Pearson correlation coefficient (r) is

Table 1
contingency table

GIs involving BP1 GIs not involving BP1

GIs involving BP2 A C

GIs not involving BP2 B D

Where,
A ¼ Number of GIs between BP1 and BP2 genes

B ¼ Number of GIs between BP1 and non- BP2 genes

C ¼ Number of GIs between BP2 and non- BP1 genes

D ¼ Number of GIs that do not involve BP1 or BP2 genes
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r ¼ n
P

xy � P
xð Þ P yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
P

x2ð Þ � P
xð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
P

y2ð Þ � P
yð Þ2

q

where n is the number of pairs of data points in the GI profiles,
x and y, of two genes. Assuming that we have a list of GIs as three
column file (Gene1, Gene2, and SGA score), the following R script
can be used to (1) generate the SGA score matrix and then (2) cal-
culate Pearson correlation coefficient values for each gene pair in
the matrix.

data <- read.table(file.choose(),header¼T,sep¼"\t")

data.mat <- acast(data, Gene1~Gene2, value.var¼"Score")

PCC <- cor(data.mat)

write.table(PCC, file¼"Output-matrix.txt")

Similar to GI scores, GI profile correlation can be used to
generate the epistatic network. A threshold on the significance of
the GI profile correlation scores can be set either by using statistical
means such as null distribution-based p-values. The GI profile
correlation similarity network can be visualized using the Spatial
Analysis of Functional Enrichment (SAFE) tool which is described
in detail elsewhere [25]. Briefly, SAFE highlights regions that are
densely connected with a particular attribute such as Gene Ontol-
ogy (GO) or cellular bioprocesses.

2.3.5 Finding Positive

and Negative GI Hubs

Hub genes in the network are genes with high number of GIs [26],
and are typically central to the network’s architecture because of
their essential role in the cellular processes. Their functions become
even more vital in the differential (or dynamic) network when two
static GI networks screened under two different conditions are
compared. In a given static network, the number of direct connec-
tions a node i (gene or protein) has is referred to as its connectivity
degree. When a network is represented as an adjacency matrix M,
the degree of gene i is calculated by

XNETn

j¼1

M i; jð Þ

where M(i, j) is an index representing ith row and jth column of
the matrix M. NETn is the number of genes in the network or
number of columns in the matrix M. High number of interactions
of a gene in the GI network is expected to have an important role.
Consequently, CCos with wider role in the network are likely to be
hubs. On the other hand, genes interacting with many CCos,
especially a particular chaperone family, could be predicted to
have close functional association with them. Furthermore, a
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dominant type of GI (positive or negative) could further help in
deciphering the nature of the potential associations.

Assuming that we have a list of GIs as three column files
(Gene1, Gene2, and SGA score), the following R script can be
used to calculate the number of positive and negative interactions
of each gene in the network.

# Read GI file containing gene names and GI score (Gene1,

Gene2, and Score delimited by tab)

data <- read.table(file.choose(),header¼T,sep¼"\t")

#Separating positive and negative GIs

data.neg <- subset(data, data$Score < 0, select ¼ c(Gene1,

Gene2))

data.pos <- subset(data, data$Score > 0, select ¼ c(Gene,

Gene2))

#Importing igraph library to do graph based calculations

library(igraph)

#Generating graph for positive and negative GIs, respectively

g.pos <- graph_from_data_frame(data.pos, directed¼F)

g.neg <- graph_from_data_frame(data.neg, directed¼F)

# Converting gene degree values into a dataframe

g.pos.degree <- as.data.frame(degree(g.pos))

g.neg.degree <- as.data.frame(degree(g.neg))

library(data.table)

#Use gene names as first column of the dataframe

setDT(g.pos.degree, keep.rownames ¼ TRUE)

setDT(g.neg.degree, keep.rownames ¼ TRUE)

#Assign desired names to the columns in the dataframe

setnames(g.pos.degree, 1, "Genes")

setnames(g.pos.degree, 2, "Degree")

setnames(g.neg.degree, 1, "Genes")

setnames(g.neg.degree, 2, "Degree")

#Merge 2 dataframes with respect to gene names

g.pos.neg.degree <- (merge(g.pos.degree, g.neg.degree, by.

x¼"Genes", by.y¼"Genes", sort¼F, all ¼T))

#Assign desired names to the columns in the dataframe

setnames(g.pos.neg.degree, 2, "PositiveDegree")

setnames(g.pos.neg.degree, 3, "NegativeDegree")

#Replace "NA" value with 0

g.pos.neg.degree[is.na(g.pos.neg.degree)] <- 0

#Export the results

write.table(g.pos.neg.degree,"CHap-net-degree-alle-aggr.txt",

sep¼"\t", row.names ¼ FALSE, quote ¼ FALSE)
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2.4 Construction of

PPI Network from

Multiple High-

Throughput Studies

Ideally, the integration of PPIs from several high-throughput stud-
ies should be performed because it broadens the coverage of the
chaperone interactome (Fig. 2). To illustrate the chaperone-based
PPI network construction, we can use the following large-scale
proteomic studies, where interactions can be restricted to a bait
(or target) CCo protein: Gavin et al. [5], Krogan et al. [27], Wodak
et al. [28], Babu et al. [29], and Gong et al. [20]. These studies
utilized MALDI-TOF (Matrix-assisted Laser Desorption/Ioniza-
tion Time of Flight) MS and/or tandem liquid chromatography
(LC-MS/MS) based confidence probability scores [30] for protein
identification. Briefly, the confidence scores are calculated as the
probability of a prey protein (or peptide), suggesting the likelihood
of its appearance in the purifications pertaining to a bait. Gold
standard literature reference set of PPIs from BioGRID (https://
thebiogrid.org/) can be used to calculate an optimum probability
score as a threshold at a high precision value. Specific thresholds of
these two (typically, Z-score � 1 for MALDI-TOF/MS, LC-MS/
MS and confidence score > 70%) scores can be used to discard low
confidence PPI detections [27, 31].

In order to make use of the compiled PPI datasets, an appro-
priate relative weighting must be performed as the different data-
sets may have different scoring methods, which can lead to a
scoring bias. In the case of chaperone PPIs, the purification enrich-
ment (PE) and the hypergeometric Hart interaction scores [32, 33]
are computed and compared by selecting the method that yields the
highest number of CCos. In the case of the Hart score, an
integrated PPI score can be computed by summing the relative

Fig. 2 A computational framework to integrate PPIs obtained from multiple high-throughput studies to
construct a high-fidelity PPI network
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weights from each dataset as follows: Gavin_Hart � γ1 + Babu_-
Hart � γ2 + Krogan_Hart � γ3 + Gong_Hart � γ4, where γ is the
weight of an individual dataset obtained by applying logistic regres-
sion. The γ value varies according to the influence of each dataset
on the overall precision of the PPI scoring.

To determine an optimum threshold of the Hart score, PPIs
can be compared to a high-confidence experimentally validated set
of protein complexes from a CYC2014 gold standard reference set
[34]. An individual dataset can increase or decrease the overall
precision and, therefore, its γ value can be fine-tuned to obtain a
score cutoff, where coverage of interactions is maximized while
maintaining a high precision value. We find the Hart scoring
method to be a better predictor of CCo PPIs.

2.5 Prediction of

Protein Complexes

Using Clustering

Algorithm

Since densely connected regions of a PPI network suggest that
associated proteins are likely to have a similar function [28], clus-
tering methods have been used to identify and predict protein
complexes and functional modules [35]. The Markov clustering
method (MCL) can be used [36] to identify the macromolecular
assemblies within the CCo PPI network. The resulting clusters can
be benchmarked based on the overall cluster properties such as the
number of clusters, average cluster size, intra- and inter-cluster
functional diversity as measured by Shannon index of gene ontol-
ogy (GO) terms in biological process and molecular function [37],
as well as CYC2014 [34] complex coverage through precision and
homogeneity metric [38]. Based on the minimization of intra-
cluster average functional diversity and coverage of known
CYC2014 complex members, an inflation parameter can be chosen
to generate the finalized PPI clustering. An MCL clustering algo-
rithm tool can be downloaded from http://micans.org/mcl/ and
can be run from command line. An example of the application of
this tool is shown below:

mcl <-|InputFile> --abc -o OutputFile

When running this program, the inflation value is usually cho-
sen in the range of 1.2–5.0.

2.5.1 Quality Assessment

of Predicted Protein

Complexes

A substantial overlap of a predicted cluster with one or more high-
confidence literature-curated protein complexes (CYC2014) is a
measure of high quality [27]. Here, we provide a detailed explana-
tion on how to do this analysis. Assuming that there are c predicted
clusters (C1. . .Cc) and m CYC2014 complexes (CYC1. . .CYCm),
we construct a m�c matrix A (also called confusion matrix) where
rows represent the number of common proteins in each of the
CYCi complexes in CYC2014 with the Cj clusters and columns
representing the number of common proteins in each of the Cj

clusters with that of CYC2014 complexes.

Computational Analysis of the Chaperone Interaction Networks 285

http://micans.org/mcl/


A ¼
p11 p12 � � � p1c
⋮ ⋮ ⋱ ⋮
pm1pm2 � � � pmc

0
@

1
A ¼ pij

� �
∈ℕm�c

where pij represents an index of the matrix A.

The following four quantities are then computed:

1. Si is the sensitivity that quantifies the extent by which a
CYC2014 complex CYCi aggregated within the same predicted
cluster.

Si ¼ maxj pij

� �
=
Xc
j¼1

pij

2. H CYC
i is the homogeneity that quantifies the extent by which a

CYC2014 complex is distributed among predicted clusters.

H CYC
i ¼

Xc
j¼1

pij=
Xc
j¼1

pij

 !
: pij=

Xm
i¼1

pij

 !

3. Positive predicted value, PPVj, of a predicted cluster determines
the maximum portion of it being part of a CYC2014 complex

PPVj ¼ maxi pij

� �
=
Xm
i¼1

pij

4. H C
j is the homogeneity of a predicted cluster calculating the

extent to which it is distributed among CYC2014 complexes.

H C
j ¼

Xm
i¼1

pij=
Xm
i¼1

pij

 !
: pij=

Xc
j¼1

pij

 !

These four quantities are then used to calculate overall agree-
ment between CYC2014 complexes and predicted clusters repre-
sented by Precisiontotal and Homogeneitytotal which are defined as:

Precisiontotal ¼ sqrt Smean � PPVmeanð Þ
Homogeneitytotal ¼ sqrt H CYC

mean �H C
mean

� �
Here, Smean and PPVmean are the averages of Si and PPVj values

across the columns and rows, respectively.H CYC
mean andH C

mean are the
averages of all theH CYC

i andH C
j values, respectively. Below is an R

script to calculate the overall precision and homogeneity as
described above.
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#Read an input file containing a matrix in which each cell

represents the overlapping proteins between a literature

complex (rows) and predicted MCL cluster (columns)

data<- (read.table("mat.txt",sep¼"\t", header¼T, row.names¼1))

#Function to calculate Precisiontotal and Homogeneitytotal

Preci.homog <- function (D){

M <- as.matrix(D, nrow ¼ 1, ncol ¼ 1, byrow ¼ FALSE, dimnames

¼ NULL, row.names ¼ 1)

HCmean <- mean(colSums(t(apply(M, 1, function(i) i/sum(i)))

*apply(M, 2, function(i) i/sum(i))))

HMmean <- mean(rowSums(t(apply(M, 1, function(i) i/sum(i)))

*apply(M, 2, function(i) i/sum(i))))

Smean <- mean(apply(M,1,max)/(rowSums(M)))

PPVmean <- mean(apply(M,2,max)/(colSums(M)))

Precision.tot <- sqrt(Smean*PPVmean)

Homogeneity.tot <- sqrt(HMmean*HCmean)

newlist <- list("Precision_total" ¼ Precision.tot, "Homoge-

neity_total" ¼ Homogeneity.tot)

return(newlist)

}

#Calling the function for input matrix

Preci.homog(data)

2.6 Building a

Combined Physical-

Genetic Interaction

Network

Deciphering the functional relationships among proteins is essen-
tial to comprehend all facets of cell biology. Typically, proteins in
the cellular environment work as complexes and are part of a
multidimensional proteome [21]. In Subheading 2.3.1, we
described an elegant approach to predict protein complexes or
pathways by applying hierarchical clustering to the GI profiles.
Experimentally identified or predicted protein complexes on their
own would not exhibit connections with each other. An auxiliary
course to fill in this knowledge gap is to use GI information to
investigate association between already known or predicted protein
complexes [39]. Furthermore, these techniques help in the predic-
tion of new members of complexes since a gene holding high GI
profile correlation with most of the complex members is likely to be
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another component of the complex. To establish functional con-
nections between protein complexes, the GI profile similarity net-
work can be overlaid onto the predicted MCL clusters obtained
from the physical PPIs. This data integration is essential as the PPI
network cannot establish genetic (or epistatic) connections
between complexes. Hence, integrating GI with PPI provides an
additional layer of information to the network.

By using the average GI profile similarity scores between genes
(proteins) of two clusters as a connectivity score, a quantitative
inter-complex connection can be established (Fig. 3). At the
intra-complex level, proteins are connected using their respective
GI profile similarity metrics. Only positive correlations among
genes within the same complex are considered to be meaningful
in this analysis.

3 Concluding Remarks

Our stepwise strategy provides a computational framework for
capturing PPI and GI data on CCos. Given their promiscuous
and typically transient folding functions in the cell, most CCo
interactions tend to be difficult to obtain using affinity purification

Fig. 3 Schematic overview of mapping GI profile correlations onto predicted protein clusters. Functional
relationships between predicted protein clusters are obtained by averaging the GI profile correlation scores
among their (gene) members. Similarly, positive GI profile correlation scores are used to enhance the
envisaged functional connections within a cluster
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(AP)/MS methods. Furthermore, some CCo genes, like Hsp90,
are pleiotropic and are considered prototypical capacitors of genetic
variation in many organisms [40–42]. This complicates their inter-
action study using GI data since pleiotropic genes tend to have
many GIs with different genes from multiple pathways. Therefore,
even though pleiotropic genes often are hubs in the GI network,
they seldom show functional enrichment with specific pathways/
processes. Hence, by combining both the GI and the PPI data, a
global CCo functional pattern can be elucidated where complexes
containing specialized CCos have more inter-complex connections
compared to complexes containing functionally general CCos.

The computational approaches described here can generate a
comprehensive and high-fidelity CCo network that exposes the
global functional role of CCos in protein homeostasis. This can
serve as a powerful resource for anyone studying CCo interactions
from any organism as we recently did for yeast CCos [43].
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