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Abstract
The PAQosome (Particle for Arrangement of 
Quaternary structure) is a large multisubunit 
chaperone complex that is essential for the 
assembly and stabilization of other macromo-
lecular complexes. It also interacts with sev-
eral chaperones including Hsp90, Hsp70, and 
CCT.  The PAQosome is comprised of the 
R2TP complex, the URI1 prefoldin complex 
(also known as the non-canonical prefoldin-
like complex), the RNA polymerase subunit 
RPB5, and the WD40 repeat protein WDR92. 
The R2TP complex is conserved among 
eukaryotes and has been comprehensively 
studied over the last 13 years. The R2TP com-
plex is known for its involvement in the 
assembly and stabilization of L7Ae ribonu-
cleoproteins, U5 small nuclear ribonucleopro-
tein, RNA polymerase II, 
phosphatidylinositol-3-kinase-related proteins 
(PIKKs), and the tuberous sclerosis complex 
(TSC1-TSC2). By contrast, the URI1 pre-
foldin complex has evolved exclusively in 

higher metazoans. Although the URI1 pre-
foldin complex was initially reported more 
than 15  years ago, little is known about its 
function and its role within the PAQosome. 
Given that URI1 is overexpressed in many 
types of cancer, it is surprising that the URI1 
prefoldin complex has been overlooked. This 
chapter provides an update on the recent prog-
ress uncovering the physiological roles of 
each PAQosome subunit and provides an over-
view of the potential functions of the URI1 
prefoldin complex.
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4.1	 �Overview

Molecular chaperones and their co-chaperones 
play key roles in maintaining proteostasis in 
response to environmental and stress conditions 
(Hartl et al. 2011). The R2TP chaperone complex 
(see Table 4.1 for nomenclature) was identified in 
a large-scale genomic and proteomic screen for 
Hsp90 co-factors in yeast (Zhao et  al. 2005b), 
and it was subsequently shown to be conserved in 
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Table 4.1  Nomenclature

αPFD Alpha prefoldin domain
αMHC Alpha myosin heavy chain
βPFD Beta prefoldin domain
AAA+ ATPases associated with diverse cellular 

activities
AAR2 A1-Alpha2 repression
AhR Aryl hydrocarbon receptor
AFMID Arylformamidase
ALS2 Amyotrophic lateral sclerosis 2 protein
ANP Atrial natriuretic peptide
AR Androgen receptor
ART-27 Androgen receptor trapped clone 27 

protein
Asa1 ASTRA-associated protein 1
ASTRA Assembly of Tel, Rvb and Atm-like 

kinase
ATM Ataxia-telangiectasia mutated
ATR ATM- and RAD3-related
BAD Bcl-2 associated death promoter
BAX Bcl-2 associated X protein
Bcd1 Box C/D snoRNA accumulation 1
Bcl-2 B-cell leukemia/lymphoma 2
BNP B-type natriuretic peptide
Bud27 Bud site selection protein 27
CCDC103 Coiled-coil domain containing 103
CCT Complex containing TCP-1
CDC73 Cell division cycle protein 73 homolog
CDK1 Cyclin-dependent kinase 1
CHX Cyclohexamide
CK2 Casein kinase 2
CLN3 Cyclin 3
CREB cAMP responsive element binding 

protein
COP9 Constitutive photomorphogenesis 9
CS CHORD domain-containing protein and 

Sgt1 domain
CSN2 COP9 signalosome 2
CTR9 Cln3 requiring 9
DKC1 Dyskerin
DMAP1 DNA methyltransferase associated 

protein 1
DNA-PK DNA-dependent protein kinase
DNA-PKcs DNA–protein kinase catalytic subunit
DNAAF1 Dynein axonemal assembly factor 1
DNAAF2 Dynein axonemal assembly factor 2
DNAAF4 Dynein axonemal assembly factor 4
DSCR1 Down syndrome critical region gene 1
ECD Ecdysoneless homolog
EFsec Selenocysteine-specific eukaryotic 

elongation factor

EFTUD2 Elongation factor tu GTP binding 
domain containing 2

EGFR Epidermal growth factor receptor
eIF1A Eukaryotic initiation factor 1A
ER Estrogen receptor
EVI1 Ecotropic viral integration site 1
EZH1 Enhancer of zeste homolog 2
FBL Fibrillarin
FOG2 Friend of GATA protein 2
FOXP3 Forkhead box P3
GAR1 Glycine arginine rich protein 1
GATA4 GATA binding protein 4
Gim1 GimC subunit 1
Gim4 GimC subunit 4
GimC Genes involved in microtubule 

biogenesis complex
Gcn4 General control protein 4
HAAO 3-hydroxyanthranilate 3,4-dioxygenase
HBV Hepatitis B virus
HBx Hepatitis B virus X protein
Hit1 High temperature growth 1
HKE2 HLA class II region expressed gene 

KE2
Hsp70 Heat shock protein 70
Hsp90 Heat shock protein 90
HLE Human hepatoma cell line
IL-6 Interleukin-6
INO80 Inositol biosynthesis genes 80
IP6K2 Inositol Hexakisphosphate kinase 2
KAP1 KRAB-associated protein 1
KNYU Kynureninase
KMO Kynurenine 3-monooxygenase
KRAB Krüppel associated box
LEO1 RNA polymerase-associate protein left 

open reading frame 1
LINE-1 Long interspersed nuclear element 1
LOX-PP Lysyl oxidase precursor protein
LLRC6 Leucine rich repeat containing 6
LRP16 Leukemia-related protein 16
MAPKAP1 Mitogen-activated protein kinase 

associated protein 1
Matα1 Methionine adenosyltransferase alpha 1
MAT I Methionine adenosyltransferase I
MAT III Methionine adenosyltransferase III
Mec1 Mitosis entry checkpoint 1
MEF Mouse embryonic fibroblast
MDM4 Mouse double minute 4, human 

homolog of; p53 binding protein
MHC Major histocompatibility
miR-214 MicroRNA 214

(continued)
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Table 4.1  (continued)

MLST8 Mammalian lethal with SEC13 protein 
8

MOT48 Motile flagella 48
MRE11 Meiotic recombination 11
MRN Mre11-Rad50-Nbs1
mRNP Messenger ribonucleoprotein
mTOR Mammalian target of rapamycin
mTORC1 Mammalian target of rapamycin 

complex 1
mTORC2 Mammalian target of rapamycin 

complex 2
NAD+ Nicotinamide adenine dinucleotide
NAF1 Nuclear assembly factor 1
NBS1 Nibrin
NHP2 Non-histone protein 2
NKX2.5 NK2 Homeobox 5
NF-κB Nuclear factor kappa beta
NOP1 Nucleolar protein 1
NOP10 Nucleolar protein 10
NOP56 Nucleolar protein 56
NOP58 Nucleolar protein 58
NUFIP1 Nuclear FMRP interacting protein 1
OCT1 Organic cation transporter 1
OGT O-linked N-acetylglucosamine 

transferase 110 kDa subunit
OIP2 Opa-interacting protein 2
PAF1 RNA polymerase II-associated factor 1
PAQosome Particle for arrangement of quaternary 

structure
PEP Phosphoenolpyruvate
PDRG1 p53 and DNA damage regulated 1
PFDN1 Prefoldin subunit 1
PFDN2 Prefoldin subunit 2
PFDN3 Prefoldin subunit 3
PFDN4 Prefoldin subunit 4
PFDN4r Prefoldin subunit 4-related
PFDN5 Prefoldin subunit 5
PFDN6 Prefoldin subunit 6
PIAS2 Protein inhibitor of activated STAT2
PIH1 PIH1 homology domain
Pih1 Protein interacting with Hsp90
PIH1D1 PIH1 domain-containing protein 1
PIH1D3 PIH1 domain-containing protein 3
PIKK Phosphatidylinositol-3-kinase-related 

kinase
PKA Protein kinase A
POLR2E RNA polymerase II subunit E
POLR2M RNA polymerase II subunit M
PP1γ Protein phosphatase 1 catalytic subunit 

gamma
PP2A Protein phosphatase 2A

PRAS40 Proline-rich Akt substrate
PRP8 Pre-mRNA-processing factor 8
PRP31 Pre-mRNA-processing factor 31
RAD50 Radiation sensitive 50
RSC Remodel of the structure of chromatin 

complex
RSC4 Remodel of the structure of chromatin 

complex subunit 4
RMP RNA polymerase II subunit 5-mediating 

protein
RNAP RNA polymerase
RNP Ribonucleoprotein
R2TP Rvb1–Rvb2–Tah1–Pih1
Rpa190 DNA directed RNA polymerase I 

190 kDa polypeptide
RPAP3 RNA polymerase II-associated protein 3
RPB1 RNA polymerase II subunit B1
RPB5 RNA polymerase II subunit B5
Rpc25 DNA-directed RNA polymerase III 

25 kDa polypeptide
RPN8 Regulatory particle non-ATPase 8
Rsa1 Ribosome assembly protein 1
RuvBL1 RuvB-like AAA ATPase 1
RuvBL2 RuvB-like AAA ATPase 2
S6K1 Ribosomal protein S6 kinase beta-1
SARM Selective androgen receptor modulator
SBP2 SECIS binding protein 2
SECIS Selenocysteine insertion sequence
SHQ1 Small nucleolar RNAs of the box H/

ACA family quantitative accumulation 
1

SNCG Gamma synuclein
SKP2 S-phase kinase-associated protein 2
SMN Survival motor neuron
SMG-1 Nonsense-mediated mRNA decay 

associated phosphatidylinositol-3-
kinase-related kinase

SNF5 Sucrose non-fermentable 5
snoRNA Small nucleolar RNA
snoRNP Small nucleolar ribonucleoprotein
snRNP Small nuclear ribonucleoprotein
SNRNP200 Small nuclear ribonucleoprotein U5 

subunit 200
SNU13 Small nuclear ribonucleoprotein 13
SPAG1 Sperm-associated antigen 1
Spt5 Suppressor of ty 5
STAP1 SKP2-associated alpha prefoldin 1
STAT2 Signal transducer and activator of 

transcription 2
Sth5 SNF two homolog
SUZ12 Suppressor of zeste 12 protein homolog

(continued)
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humans (Boulon et  al. 2008; Te et  al. 2007). 
High-resolution mapping of the human RNAP II 
interaction network revealed that the R2TP com-
plex associated with a URI1-containing prefoldin-
like complex (also known as the non-canonical 
prefoldin-like complex) (Cloutier et  al. 2009; 
Jeronimo et  al. 2007) and with the RNA poly-
merase subunit RPB5 (POLR2E) and the WD40 
repeat protein WDR92. The R2TP complex is 
involved in the assembly and stabilization of var-

ious macromolecular complexes including L7Ae 
RNPs (Boulon et al. 2008; Machado-Pinilla et al. 
2012; Zhao et  al. 2008), U5 snRNP (Cloutier 
et  al. 2017; Malinova et  al. 2017), RNAP II 
(Boulon et al. 2010), PIKK complexes (Horejsi 
et  al. 2010), the MRN complex (von Morgen 
et al. 2017), and the TSC complex (Cloutier et al. 
2017; Malinova et al. 2017). In addition, R2TP-
like complexes have been hypothesized to medi-
ate axonemal dynein assembly (Hartill et  al. 
2018; Li et  al. 2017; Zur Lage et  al. 2018). To 
emphasize its involvement in the assembly of 
macromolecular machinery, we have recently 
renamed the R2TP/URI1 prefoldin complex/
RPB5/WDR92 to the PAQosome for Particle for 
Arrangement of Quaternary structure (Houry 
et al. 2018).

4.2	 �The PAQosome Subunits

The PAQosome contains eleven subunits. Nine 
subunits can be subdivided into two groups: the 
R2TP complex and the URI1 prefoldin complex 
(Fig.  4.1 and Table 4.2). The R2TP complex is 
comprised of RuvBL1, RuvBL2, RPAP3 and 
PIH1D1; while the URI1 prefoldin complex is 
comprised of URI1, UXT, PDRG1, PFDN2, and 
PFDN6. The two other PAQosome subunits are 
the RNAP subunit RPB5 and the WD40 repeat 
protein WDR92. RPB5 is likely associated with 
the URI1 prefoldin complex since it interacts 
with URI1 (Dorjsuren et  al. 1998), whereas 
WDR92 is likely associated with the R2TP com-
plex since it interacts with RPAP3 and PIH1D1 
(Inoue et al. 2010; Ni et al. 2009) (Fig. 4.2).

The R2TP complex is essential for PAQosome-
mediated assembly activities. R2TP is a con-
served protein complex that has been identified in 
mammalian cells (Boulon et  al. 2008; Te et  al. 
2007), Drosophila (Benbahouche Nel et  al. 
2014), Plasmodium (Ahmad et  al. 2013), and 
yeast (Zhao et  al. 2005b). In yeast, the R2TP 
complex is comprised of Rvb1, Rvb2, Pih1 and 
Tah1 (Fig.  4.1). RuvBL1/Rvb1 and RuvBL2/
Rvb2 are highly conserved and are essential for 

Table 4.1  (continued)

SWI Switching deficient
SWR1 SWI/SNF related protein
Tah1 TPR-containing protein associated with 

Hsp90
TBC1D7 Tre2-Bub2-Cdc16 domain family 

member 7
TERC Telomerase RNA component
TERT Telomerase reverse transcriptase
TDO2 Tryptophan 2,3-dioxygenase
TIP48 TBP-interacting protein 48
TIP49 TBP-interacting protein 49
TIP60 TAT-interactive protein 60 kDa
Tel1 Telomere maintenance 1
TEL2 Telomere maintenance 2
TFIIB Transcription factor IIB
TFIIF Transcription factor IIF
TNFα Tumor necrosis factor alpha
TPR Tetratricopeptide repeat
TRA1 Transcription-associated protein 1
TRRAP Transformation/transcription domain-

associated protein
TSC Tuberous sclerosis complex
TTI1 TEL2 interacting protein 1
TTI2 TEL2 interacting protein 2
TTT TEL2-TTI1-TT2
URI1 Unconventional prefoldin RPB5 

interactor 1
UXT Ubiquitously expressed transcript
UXT-AS1 Ubiquitously expressed transcript 

antisense strand 1
VHL von Hippel–Lindau tumor suppressor
WAC WW domain-containing adaptor protein 

with coiled-coil
WDR92 WD-40 repeat domain 92
ZNHIT2 Zinc finger HIT-type containing 2
ZNHIT3 Zinc finger HIT-type containing 3
ZNHIT6 Zinc finger HIT-type containing 6

J. Lynham and W. A. Houry
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Fig. 4.1  Domain structure of the PAQosome subunits 
and yeast homologues
The domain organization of the human and yeast 
PAQosome subunits. WA, Walker A; WB, Walker B; DII, 

Domain II; S1, sensor 1; S2, sensor 2; RPAP3_N, possible 
N-terminal domain; RPAP3_C, RPAP3 C-terminal 
domain; CC, coiled-coil region; D, aspartic acid rich 
region; RPB5 BD, RPB5 binding domain; CD, C-Domain. 
RPAP3 isoform 1 and UXT isoform 2 are shown

Table 4.2  Summary of PAQosome subunit functions

Subcomplex Subunit
Yeast 
ortholog Function within the PAQosome Functions outside the PAQosome

R2TP 
complex

RuvBL1/2 Rvb1/2 Client complex assembly and 
dissociation

Transcriptional regulation, DNA repair, 
mitotic spindle assembly

PIH1D1 Pih1 Scaffold for adaptors and 
clients

Stress induced signaling, may be involved 
in exosome signaling

RPAP3 Tah1 Flexible tether for Hsp90; 
stabilizes PIH1D1

Transcriptional regulation, DNA damage 
response, stem cell maintenance, circadian 
rhythm regulation

URI1 
Prefoldin 
complex

URI1 Bud27 May regulate R2TP complex 
activity and localization; 
stabilizes RPB5

Nutrition signaling, transcriptional 
regulation

UXT May stabilize URI1 prefoldin 
complex

Male germ cell differentiation, 
transcriptional regulation

PDRG1 Methionine adenosyl transferase regulation
PFDN2 Gim4 Component of canonical prefoldin complex, 

transcriptional regulation within nervous 
system

PFDN6 Gim1 Component of canonical prefoldin complex, 
adaptive immunity and cancer

None WDR92 May stabilize RPAP3-
PIH1D1 interaction

Dynein arm assembly within R2TP-like 
complexes

RPB5 Rpb5 Scaffold for RNAP II Component of all three RNAPs

4  The Multiple Functions of the PAQosome: An R2TP- and URI1 Prefoldin-Based Chaperone Complex
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viability (Bauer et  al. 2000; Kanemaki et  al. 
1999; Qiu et al. 1998). By contrast, PIH1D1 and 
RPAP3 vary in size and domain composition rel-
ative to yeast Pih1 and Tah1, respectively, sug-
gesting that they evolved to have more specialized 
roles and interacting partners. This is evidenced 
by the fact that PIH1D1 and RPAP3 interact with 
WDR92 (Inoue et  al. 2010; Ni et  al. 2009), 
whereas a functional ortholog of WDR92 in yeast 
is absent. Furthermore, Tah1 is a small protein 
(111 residues), while RPAP3 is much larger (665 
residues).

In contrast to the R2TP complex, the URI1 
prefoldin complex does not appear to play a 
significant role in most PAQosome-mediated 
processes. In fact, the URI1 prefoldin complex 
is present in humans, but is absent in yeast 

(Fig.  4.1). The yeast orthologs of URI1, 
PFDN2 and PFDN6 are Bud27, Gim4 and 
Gim1, respectively; whereas, yeast orthologs 
of UXT and PDRG1 have not been identified 
(Table 4.2). Both URI1 and Bud27 bind RPB5, 
an RNAP subunit common to all three RNAPs, 
suggesting that both URI1 and Bud27 have a 
conserved role in RNAP assembly. The physi-
cal link between the R2TP complex and the 
URI1 prefoldin complex has yet to be 
determined.

Below, the terms Rvb1, Rvb2, Pih1, Tah1, 
Bud27, Gim4 and Gim1 will be used when refer-
ring to yeast proteins, and the terms RuvBL1, 
RuvBL2, PIH1D1, RPAP3, URI1, PFDN2 and 
PFDN6 will be used when referring to mamma-
lian proteins.

Fig. 4.2  Schematic of the PAQosome structure
(a) R2TP complex (purple), URI1 prefoldin complex 
(green), RPB5 (yellow), WDR92 (orange) and Hsp90 
(red) are shown based on previously reported protein 
interactions. The link between the URI1 prefoldin com-

plex and the R2TP complex has not been reported (dotted 
line). β, possible duplicated beta subunit. (b) Structure of 
the RuvBL1/2 hetero-hexamer (PDB ID 5OAF). Top and 
side views of RuvBL1/2 (purple) are shown. DII residues 
(magenta) are omitted in the top view for clarity

J. Lynham and W. A. Houry
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4.2.1	 �R2TP Subunits: Domains, 
Assembly and Functions

4.2.1.1	 �RuvBL1 (Pontin, TIP49, Rvb1) 
and RuvBL2 (Reptin, TIP48, 
Rvb2)

RuvBL1 and RuvBL2 are the catalytic compo-
nents of the PAQosome. They are two paralogous 
members of the AAA+ superfamily. They contain 
one AAA+ domain with five highly conserved 
motifs: Walker A, Walker B, sensor 1, arginine 
finger, and sensor 2 (Fig. 4.1). The Walker A and 
Walker B motifs mediate the binding and hydro-
lysis of ATP, respectively, while the sensor 1, 
arginine finger and sensor 2 motifs mediate the 
conformational changes associated with ATP 
binding and hydrolysis (Miller and Enemark 
2016).

Although both have intrinsic ATPase activity, 
RuvBL1 and RuvBL2 often function together in 
hexameric or dodecameric complexes. Homo-
hexameric rings have been observed for RuvBL1 
alone and RuvBL2 alone in vitro (Matias et  al. 
2006; Niewiarowski et  al. 2010), hetero-
hexameric rings have been observed for yeast 
Rvb1/2 (Gribun et al. 2008) and human RuvBL1/2 
(Aramayo et  al. 2018) (Ayala et  al. 2018), and 
although their formation was proposed to be an 
artifact induced by histidine tags (Cheung et  al. 
2010), hetero-dodecameric complexes in yeast 
Rvb1/2 and human RuvBL1/2 have been observed 
under several experimental conditions (Ewens 
et al. 2016; Gorynia et al. 2011; Jeganathan et al. 
2015; Lakomek et al. 2015; Lopez-Perrote et al. 
2012; Martino et al. 2018; Puri et al. 2007; Silva-
Martin et  al. 2016; Torreira et  al. 2008). 
Dodecameric assembly is mediated by the inser-
tion domain present in both RuvBL1 and RuvBL2 
called Domain II (DII) that protrudes out of the 
hexamer (Figs. 4.1 and 4.2) (Torreira et al. 2008).

The catalytic activity for RuvBL1 and 
RuvBL2 is presumably substrate and nucleotide 
driven (Fig. 4.3). It is reasonable to assume that 
before R2TP complex assembly, RuvBL1 and 
RuvBL2 exist as an ADP-bound hetero-hexamer 
or hetero-dodecamer (Martino et  al. 2018). 
RPAP3 and PIH1D1 binding has been shown to 

disrupt RuvBL1/2 hetero-dodecamers into 
hetero-hexamers (Martino et  al. 2018). The 
recent cryo-EM structure of human R2TP showed 
that the RPAP3 C-terminal binds to RuvBL2 on 
the AAA+ face opposite of the DII face (Fig. 4.2a) 
(Martino et  al. 2018). The DII face is free to 
interact with client proteins or adaptors through 
an ATP-dependent or ATP-independent mecha-
nism (McKeegan et al. 2009; Zhou et al. 2017a). 
In the presence of ATP, the R2TP complex is not 
stable. In yeast, the addition of ATP to R2TP 
caused the release of Pih1 and Tah1 (Kakihara 
et al. 2014; Prieto et al. 2015; Tian et al. 2017). 
These findings suggest that the PAQosome acts 
as a scaffold that loads client proteins onto 
RuvBL1/2 and Hsp90 (or other chaperone), and 
that ATP binding to RuvBL1/2 either initiates the 
assembly process independent from other 
PAQosome subunits, or that it terminates the 
PAQosome-client interaction after complex 
assembly (Fig. 4.3). To complete the cycle, ATP 
must be hydrolyzed before dodecamerization 
since ATP was also shown to disrupt Rvb1/2 
dodecamers (Zhou et al. 2017a).

RuvBL1 and RuvBL2 also have essential 
roles outside of the PAQosome (reviewed in 
Nano and Houry 2013). They are key compo-
nents of the chromatin remodeling INO80 
(Jonsson et al. 2001; Shen et al. 2000) and SWR1 
(Krogan et al. 2003) complexes, the histone acet-
yltransferase TIP60 complex (Ikura et al. 2000), 
the Fanconi anemia core complex, which is 
involved in DNA inter-strand cross repair 
(Rajendra et  al. 2014; Rosenbaum et  al. 2013), 
and several complexes involved in transcriptional 
regulation (Bauer et al. 2000; Gospodinov et al. 
2009; Kim et al. 2005; Lopez-Perrote et al. 2014). 
In addition, RuvBL1 and RuvBL2 are essential 
for eukaryotic cell growth and development 
(Etard et  al. 2005; Qiu et  al. 1998; Rottbauer 
et al. 2002). RuvBL1 and RuvBL2 also promote 
cell survival and are overexpressed in various 
types of cancer (reviewed in Mao and Houry 
2017). Furthermore, RuvBL1 and RuvBL2 have 
been implicated in mitotic spindle assembly since 
they associate with tubulin in the mitotic spindle 
apparatus and in the centrosome during mitosis 
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(Ducat et  al. 2008; Gartner et  al. 2003; Sigala 
et al. 2005).

4.2.1.2	 �PIH1D1 (Pih1, Nop17)
PIH1D1 is primarily a scaffold protein that medi-
ates PAQosome interactions with client com-
plexes. PIH1D1/Pih1 contains a PIH1 domain 
and a CS domain (Fig. 4.1). The N-terminal of 
the PIH1 domain binds to several clients and 
assembly factors through a DpSDD/E motif that 
is dependent on the constitutively active CK2 
kinase for serine phosphorylation (Grankowski et 
al. 1991; Horejsi et al. 2014; Mir et al. 2016; von 
Morgen et al. 2017). Within the PAQosome, the 
conformation of PIH1D1 is not well defined due 
to its inherent flexibility, but it is likely similar to 
Pih1 in yeast R2TP where it binds to multiple DII 
domains within an open basket formed by the 
Rvb1/2 hetero-hexamer (Fig. 4.2) (Martino et al. 
2018; Rivera-Calzada et  al. 2017; Tian et  al. 
2017). The central region of Pih1 mediates the 
recruitment of Pih1-Tah1 to the Rvb1/2 hetero-
hexamer (Rivera-Calzada et  al. 2017). The 

PIH1D1/Pih1 C-terminal contains a CS domain 
that also appears in the Hsp90 co-chaperones p23 
and Sgt1 (Ali et al. 2006; Omran et al. 2008), and 
it interacts directly with Hsp90 (Zhao et  al. 
2005b, 2008; Quinternet et al. 2015). In yeast, the 
CS domain of Pih1 is unstable on its own and is 
stabilized upon interaction with the C-terminal 
domain of Tah1 (Eckert et  al. 2010; Paci et  al. 
2012). When not bound to Tah1, Pih1 was found 
to interact with the proteasome lid subunit RPN8 
to mediate its degradation in a ubiquitin-indepen-
dent manner (Paci et  al. 2016). In mammalian 
cells, PIH1D1 is also stabilized through RPAP3 
binding (Yoshida et al. 2013).

PIH1D1/Pih1 may have additional roles inde-
pendent of the PAQosome. Pih1 is not essential 
for cell viability in yeast, but its depletion caused 
a temperature-sensitive phenotype (Gonzales 
et  al. 2005), and siRNA-mediated depletion of 
PIH1D1 sensitized U2OS cells to doxorubicin-
induced apoptosis, suggesting a role for modulat-
ing stress induced pathways (Inoue et al. 2010). 
In addition, PIH1D1/Pih1 may have a regulatory 

Fig. 4.3  Client complex assembly by R2TP
(a) ATP-independent complex assembly and (b) ATP-
dependent complex assembly mechanisms are shown. 

Symbols for proteins and nucleotides are shown on the 
right

J. Lynham and W. A. Houry



45

role for rRNA synthesis and processing. Pih1 was 
originally identified in yeast as an interactor of 
the exosome subunit Rrp43 that is involved in 
rRNA processing (Gonzales et al. 2005; Mitchell 
et al. 1997). Moreover, PIH1D1 associated with 
histone H4 to promote rRNA transcription 
through recruitment of RNAP I (Zhai et al. 2012), 
and it was also shown that knockdown of 
PIH1D1  in MCF-7 cells decreased rRNA tran-
scription (Kamano et  al. 2013). PIH1D1 may 
also be involved in regulating proteasomal degra-
dation of certain proteins since its interaction 
with SNF5, a component of the SWI/SNF chro-
matin remodeling complex, was shown to attenu-
ate SNF5 degradation (Zhai et al. 2009). Of note, 
an important caveat to consider with all these 
findings is that these processes may be dependent 
on PIH1D1 function within the PAQosome rather 
than on PIH1D1 function exclusively.

4.2.1.3	 �RPAP3 (Tah1, Spag1)
After the identification of the R2TP complex in 
yeast, an analysis of the human Hsp90 proteome 
identified human orthologs of Rvb1, Rvb2, and 
Pih1, but not for Tah1 (Te et al. 2007). From this 
analysis, Boulon and colleagues observed that 
the Drosophila TPR-containing protein Spag1 
could be the Tah1 equivalent (Boulon et al. 2008). 
They observed that Spag1 was part of the human 
Hsp90 interactors and that Spag1 was previously 
shown to interact with Drosophila Hsp90 and 
Drosophila Pih1  in yeast two-hybrid screens 
(Boulon et  al. 2008; Giot et  al. 2003; Te et  al. 
2007). They showed that human Spag1 linked 
Hsp90 to PIH1D1, demonstrating that human 
Spag1 was the functional human equivalent of 
Tah1 (Boulon et al. 2008). Human Spag1 is more 
widely known as RPAP3 because a previous 
independent study identified human Spag1  in a 
survey of protein complexes that were associated 
with RNAP II components (Jeronimo et al. 2007).

RPAP3 is the largest subunit within the 
PAQosome. It contains a potential N-terminal 
domain, two TPR domains and an RPAP3 
C-terminal domain (Fig. 4.1). The TPR domains 
likely bind Hsp90 and the C-terminal domain 
binds to RuvBL2 on the ATPase face of the 
RuvBL1/2 hexamer (Fig.  4.2a) (Martino et  al. 

2018). The long central segment spans the rim of 
the RuvBL1/2 ring to stabilize PIH1D1 while 
simultaneously providing a flexible tether for 
Hsp90 binding (Martino et al. 2018). Drosophila 
Spag1 has a similar domain architecture as 
RPAP3; however, in addition to Hsp90, Spag1 
can also bind Hsp70 isoforms containing a 
C-terminal EEVD motif (Benbahouche Nel et al. 
2014). In addition to its function in the PAQosome, 
there have been reports implicating RPAP3/
Spag1  in transcriptional regulation (Shimada 
et al. 2011), adult stem cell maintenance (Chen 
et  al. 2017) and circadian rhythm regulation 
(Means et al. 2015).

In contrast to RPAP3 and Spag1, Tah1 is much 
smaller (Fig.  4.1). It contains only one TPR 
domain consisting of two TPR repeats, followed 
by a C-helix and an unstructured region (Jimenez 
et al. 2012). The Tah1 TPR domain binds to yeast 
Hsp90 through the C-terminal MEEVD motif 
(Millson et al. 2008). Tah1 binds to Hsp90 in a 
1:1 stoichiometric ratio (two Tah1 monomers: 
one Hsp90 dimer). The C-terminal tail of Tah1 
contains an unfolded region that inserts into the 
CS domain of Pih1 (Back et  al. 2013; Jimenez 
et al. 2012; Pal et al. 2014).

4.2.2	 �URI1 Prefoldin Complex 
Subunits

Members of the prefoldin family contain N- and 
C-terminal α-helical, coiled-coils connected by 
either one (β-class) or two (α-class) β hairpins 
(Fig. 4.1 and Table 4.2). Canonical prefoldin sub-
units (PFDN1-PFDN6) assemble into a α2β4 
hexameric complex. In humans, the two canoni-
cal alpha subunits are PFDN3 and PFDN5, and 
the four canonical beta subunits are PFDN1, 
PFDN2, PFDN4 and PFDN6. The coiled-coil 
regions in the prefoldin complex form a jelly-fish 
like arrangement that binds its substrates with its 
tentacle-like structures (Martin-Benito et  al. 
2007; Siegert et  al. 2000). The canonical pre-
foldin complex is best known for folding nascent 
cytoskeletal proteins actin, α-tubulin and 
γ-tubulin with the help of the CCT complex 
(Geissler et al. 1998; Martin-Benito et al. 2002; 
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Siegers et al. 1999; Vainberg et al. 1998). In addi-
tion, each prefoldin subunit may have a special-
ized function. For example, PFDN1 mutations in 
mice caused defects in lymphocyte development 
(Cao et  al. 2008), whereas PFDN5 mutations 
caused photoreceptor degeneration, central ner-
vous system abnormalities and male infertility 
(Lee et al. 2011).

In contrast to the canonical prefoldin com-
plex, the function of the URI1 prefoldin complex 
is still not known. The URI1 prefoldin complex 
has been observed in humans and Drosophila 
(Cloutier et al. 2009; Giot et al. 2003; Gstaiger 
et  al. 2003; Sardiu et  al. 2008). The alpha sub-
units are URI1 and UXT, while the beta subunits 
are PDRG1 and the canonical subunits PFDN2 
and PFDN6 (Fig. 4.1). The URI1 prefoldin com-
plex may either be pentameric or hexameric with 
one of the beta subunits duplicated. It is pre-
sumed that the URI1 prefoldin complex has a 
jelly-fish like arrangement similar to the canoni-
cal prefoldin complex (Fig.  4.2). Aside from 
URI1, which takes part in mTOR signaling 
(Gstaiger et al. 2003), the URI1 prefoldin com-
plex subunits act mainly in the nucleus as tran-
scriptional regulators (Table 4.3).

4.2.2.1	 �URI1 (RMP, Bud27)
URI1 (535 residues) contains an α-type prefoldin 
domain and an elongated C-terminal domain that 
makes URI1 more than four times larger than 
α-type canonical subunits PFDN3 (193 residues) 
and PFDN5 (154 residues) (Fig.  4.1). The pre-
foldin domain interacts with and stabilizes UXT 
and PDRG1 (Gstaiger et  al. 2003; Mita et  al. 
2013), while the central region interacts with and 
stabilizes RPB5 (Dorjsuren et  al. 1998). The 
aspartic acid rich region of URI1 may stabilize 
RPB5 by acting as a DNA mimic (Chou and 
Wang 2015; Gstaiger et al. 2003). The C-terminal 
contains a URI1 box motif that is conserved in 
humans, Arabidopsis, Drosophila, C. elegans, 
and yeast (Gstaiger et al. 2003).

URI1 was initially reported as a transcription 
regulator through its association with RPB5 
(Dorjsuren et al. 1998). It can outcompete viral 
proteins or transcription factors that share the 
same binding site on RPB5 (Dorjsuren et  al. 

1998; Yang et  al. 2000; Zhou et  al. 2015a). 
Human URI1 and yeast Bud27 also coordinate 
interactions between RPB5/RNAP II and other 
protein complexes (Le et al. 2005; Miron-Garcia 
et al. 2014; Wei et al. 2003; Yart et al. 2005). In 
yeast, Bud27 binds to phosphorylated forms of 
transcribing RNAP II to modulate its elongation 
dynamics (Miron-Garcia et al. 2014).

In addition to RPB5, URI1 regulates tran-
scription through several other binding partners 
(Table  4.3). URI1 repressed steroid and aryl 
hydrocarbon receptor activity in prostate cancer 
cells and hepatocytes, respectively (Mita et al. 
2011; Tummala et  al. 2014). URI1 also 
repressed retrotransposon expression in pros-
tate cancer cells through its interactions with 
PP2A and KAP1, suggesting that URI1 has a 
role in preventing DNA damage (Mita et  al. 
2016). In fact, URI1 was shown to be essential 
for maintaining DNA stability in C. elegans and 
Drosophila (Kirchner et al. 2008; Parusel et al. 
2006). Moreover, URI1/Bud27 may also have a 
role in translation. Bud27 interacted with trans-
lation initiation factor eLF1A to promote 40S 
ribosome subunit formation (Deplazes et  al. 
2009). In addition, Gcn4 translation was dere-
pressed in Bud27 knockout cells (Gstaiger et al. 
2003).

Given the fundamental roles URI1 has on 
transcriptional regulation and DNA stability, it 
should come as no surprise that URI1 has been 
implicated in many types of cancers including 
ovarian cancer (Theurillat et al. 2011), multiple 
myeloma (Fan et al. 2014), endometroid adeno-
carcinoma (Gu et  al. 2013), uterine carcinosar-
coma (Wang et  al. 2015b), cervical cancer (Gu 
et  al. 2015; Xu et  al. 2017), gastric cancer (Hu 
et  al. 2016; Luo et  al. 2016), colorectal cancer 
(Lipinski et  al. 2016) and hepatocellular carci-
noma (Gomes et al. 2016; Tummala et al. 2014, 
2017; Wang et al. 2014; Yang et al. 2011, 2013; 
Zhang et  al. 2015; Zhou et  al. 2014, 2017b). 
Several oncogenic mechanisms in hepatocellular 
carcinoma have been reported for URI1. URI1 
inhibits the transcription of genes needed for 
NAD+ metabolism, thereby causing early DNA 
damage (Tummala et  al. 2014). URI1 also pro-
motes epithelial-mesenchymal transition, which 
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Table 4.3  Summary of URI1 prefoldin complex subunit-mediated transcriptional regulation

Prefoldin 
subunits Interactors Target genes Target gene functions Mechanisms of action References
Bud27 Rpb5 All genes 

transcribed by 
RNAP II

Regulates transcription 
elongation

Miron-Garcia et al. 
(2013)

Bud27 Sth1 All genes 
transcribed by 
RNAP II

Mediates RNAP II 
association with RSC 
complex

Miron-Garcia et al. 
(2014)

URI1 RPB5 HBx cell 
cycle targets

Proliferation, 
apoptosis

URI1 competitively binds 
RPB5, represses 
HBx-mediated gene 
expression

Dorjsuren et al. 
(1998)

URI1 HBV HBx cell 
cycle targets

Proliferation, 
apoptosis

Represses apoptotic 
factor expression, 
enhances antiapoptotic 
factor expression

Wang et al. (2014)

URI1 HBV Hepatitis B virus 
propagation

Represses transcription 
and replication

Zhou et al. (2015a)

URI1 TFIIB All genes 
transcribed by 
RNAP II

URI1 competitively binds 
TFIIB, represses 
HBx-mediated gene 
expression, and most 
likely other genes

Yang et al. (2000)

URI1 TFIIF All genes 
transcribed by 
RNAP II

Suppresses activated 
transcription

Wei et al. (2003)

URI1, 
UXT

AR AR target 
genes

Proliferation, 
development, 
signaling, lipid 
metabolism

Represses transcription; 
stabilizes AR co-factor 
UXT; prevents AR 
recruitment to promoter 
sites

Mita et al. (2011)

URI1 ER TDO2, 
AFMID, 
KMO, 
KNYU, 
HAAO

NAD+ metabolism Represses transcription in 
hepatocellular carcinoma

Tummala et al. 
(2014)

URI1 AhR TDO2, 
AFMID, 
KMO, 
KNYU, 
HAAO

NAD+ metabolism Represses transcription in 
hepatocellular carcinoma

Tummala et al. 
(2014)

URI1 CDC73, 
PAF1, 
LEO1, 
CTR9

Cell cycle 
targets

Tumor suppression Enhances transcription Yart et al. (2005)

URI1 KAP1, 
PP2A

LINE-1 Retrotransposon Activates KAP1 
complex, represses 
transcription

Mita et al. (2016)

URI1 NF-κB IL-6 B cell differentiation Enhances transcription in 
multiple myeloma and 
hepatocellular carcinoma

Fan et al. (2014) and 
Zhang et al. (2015)

URI1 NF-κB CSN2 Represses snail 
degradation

Enhances transcription in 
hepatocellular carcinoma

Zhou et al. (2017b)

(continued)
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Table 4.3  (continued)

Prefoldin 
subunits Interactors Target genes Target gene functions Mechanisms of action References
URI1 Snail Transcriptional 

E-cadherin repressor
Enhances transcription in 
gastric cancer

Hu et al. (2016)

URI1 Vimentin Intermediate 
filament

Enhances transcription in 
cervical cancer and 
gastric cancer

Gu et al. (2015) and 
Hu et al. (2016)

URI1 ATM DNA damage repair Enhances transcription in 
uterine carcinosarcoma

Wang et al. (2015b)

URI1 BAX Tumor suppression Represses transcription in 
hepatocellular carcinoma

Yang et al. (2013) 
and Zhou et al. 
(2014)

URI1 Bcl-2 Cell proliferation Represses transcription in 
hepatocellular carcinoma

Yang et al. (2013) 
and Zhou et al. 
(2014)

URI1 p53 Tumor suppressor Represses transcription Lipinski et al. (2016)
URI1 CDK1 Cell proliferation Enhances transcription in 

hepatocellular carcinoma
Yang et al. (2011)

URI1 Cyclin B Cell proliferation Enhances transcription in 
hepatocellular carcinoma

Yang et al. (2011)

UXT AR AR target 
genes

Proliferation, 
development, 
signaling, lipid 
metabolism

AR-mediated 
transcription regulator

Li et al. (2005), 
Markus et al. (2002), 
Nwachukwu et al. 
(2009) and Taneja 
et al. (2004)

UXT AR, 
LRP16

AR target 
genes

Proliferation, 
development, 
signaling, lipid 
metabolism

LRP16 co-regulates 
AR-mediated 
transcription

Yang et al. (2009)

UXT GATA4, 
FOG2, 
NKX2.5

ANP, BNP, 
αMHC

Cardiac specific 
functions

Represses transcription 
of cardiac genes during 
development

Carter et al. (2014)

UXT EVI1 EVI1 target 
genes

Cell proliferation, 
development, 
transformation

Represses EVI1-
mediated transcription

McGilvray et al. 
(2007)

UXT EZH1, 
SUZ12

NF-κB target 
genes

Cell proliferation 
inflammation, 
immunity, 
development

Enhances transcription Su et al. (2016)

UXT NF-κB, 
LRP16

NF-κB target 
genes

Cell proliferation 
inflammation, 
immunity, 
development

Enhances transcription Sun et al. (2007) and 
Wu et al. (2011)

UXT VHL AR target 
genes

Proliferation, 
development, 
signaling, lipid 
metabolism

Enhances transcription, 
mediates AR 
ubiquitination

Chen et al. (2013)

UXT FOXP3 FOXP3 target 
genes

Immune suppression Affects FOXP3 nuclear 
localization, represses 
transcription

Li et al. (2014)

UXT ALS2 N.D. May have an effect on 
NF-κB signaling

Enunlu et al. (2011)

UXT MDM4 N.D. Represses p53 activity, 
enhances NF-κB activity

Qi et al. (2015)

(continued)
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is a risk factor for metastasis (Zhou et al. 2017b). 
Furthermore, URI1 promotes the transcription of 
IL-6, which promotes metastasis (Fan et al. 2014; 
Mi and Gong 2017; Zhang et al. 2015).

4.2.2.2	 �UXT (Art-27, STAP1)
UXT is an α-type non-canonical prefoldin sub-
unit, but in contrast to URI1, it is much smaller 
(Fig. 4.1). It was given its name because it was 
observed to be ubiquitously expressed in mouse 
and human tissues (Schroer et al. 1999). UXT is 
an X-linked gene that is transcribed in response 
to growth factor stimulation and CREB signaling 
(Nwachukwu et  al. 2007). UXT is essential for 
mammalian cell growth and development (Carter 
et  al. 2014; Schafler et  al. 2018; Taneja et  al. 
2004; Zhao et al. 2005a). Recently, UXT deletion 
in somatic cells of mice was shown to be embry-
onic lethal (Schafler et al. 2018).

Two isoforms of UXT have been identified to 
have opposing roles in SARM-induced apoptosis 
(Sethurathinam et al. 2013); however, their roles 
in other contexts has not been well established. 
The non-coding antisense RNA UXT-AS1 was 

shown to regulate levels of each isoform through 
alternative splicing mechanisms of the UXT tran-
script (Yin et al. 2017). The first isoform UXT-
V1 has 12 more amino acids at its N-terminus 
than the other isoform. It is localized in the cyto-
plasm and the mitochondria and is implicated in 
TNFα-induced apoptosis and antiviral signalo-
some formation (Huang et al. 2011, 2012). Most 
studies have focused on the second isoform, 
UXT-V2, which is located mainly in the nucleus 
where it is implicated in transcriptional regula-
tion. We refer to UXT-V2 hereafter as UXT.

In the nucleus, UXT serves as a co-factor for 
multiple transcription factors and complexes 
involved in the regulation of cell proliferation, 
inflammation and differentiation (Carter et  al. 
2014; Chang et al. 2012; Chen et al. 2013; Enunlu 
et  al. 2011; Kong et  al. 2015; Li et  al. 2014; 
Markus et  al. 2002; McGilvray et  al. 2007; 
Nwachukwu et al. 2009; Qi et al. 2015; Sanchez-
Morgan et al. 2017; Silveira et al. 2004; Su et al. 
2016; Sun et  al. 2007; Taneja et  al. 2004; Wu 
et al. 2011; Yang et al. 2009; Zhou et al. 2015b) 
(Table 4.3). UXT is largely involved in enhancing 

Table 4.3  (continued)

Prefoldin 
subunits Interactors Target genes Target gene functions Mechanisms of action References
UXT ER ER target 

genes
Proliferation, 
development, 
signaling, lipid 
metabolism

Represses transcription in 
breast cancer cells

Sanchez-Morgan 
et al. (2017)

UXT LOX-PP ER target 
genes

Proliferation, 
development, 
signaling, lipid 
metabolism

Mediates UXT 
ubiquitination, enhances 
transcription in breast 
cancer cells

Sanchez-Morgan 
et al. (2017)

UXT PIAS2 N.D. May have an effect on 
AR-mediated 
transcription

Kong et al. (2015)

UXT Notch Notch target 
genes

Cell proliferation, 
development, 
differentiation

Represses transcription Zhou et al. (2015b)

UXT DSCR1 N.D. May have a role in 
regulating neurogenesis

Silveira et al. (2004)

PDRG1 MATα1 MATα1 S-adenosyl-
methionine synthesis

Represses transcription, 
affects MATα1 nuclear 
localization, reduces 
DNA methylation

Perez et al. (2016)

PFDN2 SNCG Maintains 
neurofilament 
network

Enhances transcription in 
mice

Chintalapudi et al. 
(2014, 2016)

N.D. - Not Determined
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NF-κB signaling through its interactions with 
MDM4 (Qi et al. 2015), the EZH1/SUZ12 com-
plex (Su et al. 2016), and the NF-κB enhanceo-
some (Sun et  al. 2007). By contrast, UXT also 
possesses inhibitor functions in certain growth 
pathways including EVI1-mediated transcrip-
tional repression (McGilvray et al. 2007), cardiac 
gene downregulation during cardiac myocyte dif-
ferentiation (Carter et  al. 2014), and steroid 
receptor signaling (Li et  al. 2005; Mita et  al. 
2011; Nwachukwu et al. 2009; Sanchez-Morgan 
et al. 2017). UXT was recently shown to regulate 
transcriptional programs governing male germ 
cell differentiation, presumably through its inter-
action with its co-factor URI1 and AR (Mita et al. 
2011; Schafler et al. 2018).

4.2.2.3	 �PDRG1 (PFDN4r)
PDRG1 is a β-type non-canonical prefoldin sub-
unit (Fig. 4.1). However, unlike URI1 and UXT, 
its function outside of the PAQosome is not well 
understood. In normal human tissues, PDRG1 
expression was found to be highest in testis (Luo 
et al. 2003). PDRG1 is an oncogene that is down-
regulated by tumor suppressor p53, miR-214 and 
oleuropein (Luo et al. 2003; Wang et al. 2015a; 
Xu and Xiao 2017). By contrast, it is upregulated 
in response to UV-induced DNA damage, and 
genotoxic agents (Jiang et al. 2011; Saigusa et al. 
2012). Following DNA damage, DNA-PK phos-
phorylates the stress sensor transcription factor 
OCT1 to promote PDRG1 transcription (Kang 
et al. 2009).

PDRG1 has a significant role in controlling 
epigenetic modifications. In the nucleus, PDRG1 
interacts with MATα1, the catalytic subunit of 
methionine adenosyl transferases MAT I and 
MAT III, thereby inhibiting S-adenosyl-
methionine synthesis and subsequently reducing 
global DNA methylation (Perez et  al. 2016). 
PDRG1 may also promote radioresistance in 
lung cancer (Tao et al. 2016). In response to irra-
diation, PDRG1 is upregulated and antagonizes 
apoptosis through the ATM-p53 signaling path-
way (Tao et  al. 2016). PDRG1 is also likely 
involved in cancers where miR-214 is downregu-
lated including hepatocellular carcinoma, breast 

cancer, cervical cancer and bladder cancer (Perez 
et al. 2016; Wang et al. 2015a).

4.2.2.4	 �PFDN2
PFDN2 has been implicated in neurodegenera-
tion through knock out studies and gene 
expression profiling, however, the pathogenic 
phenotypes are more likely due to aberrant 
canonical prefoldin complex assembly, and not 
PFDN2 itself (Abe et al. 2013; Broer et al. 2011; 
Filali et  al. 2014; Takano et  al. 2013; Tashiro 
et al. 2013). Interestingly, in mouse retinal gan-
glion neurons, PFDN2 has been reported to be an 
upstream regulator of γ-synuclein (Chintalapudi 
et  al. 2014, 2016), and overexpression of 
γ-synuclein in mice caused severe age- and trans-
gene dose-dependent neuropathology and motor 
deficits (Ninkina et  al. 2009). Additionally, 
PFDN2 was upregulated in neuroblastoma, pre-
sumably as a neuroprotective response that pre-
vented aggregate accumulation and 
dedifferentiation (Patil et  al. 2015; Zhang et  al. 
2016). Moreover, PFDN2 was upregulated in 
mouse retinal neural cells, and in human skeletal 
muscle cells with Type II diabetes (Al-Khalili 
et  al. 2014; Gao et  al. 2009). PFDN2 auto-
antibodies were associated with Type II diabetes 
in a Southwest American Indian population 
(Chang et al. 2015, 2017); however, the signifi-
cance of this finding is unknown.

4.2.2.5	 �PFDN6 (HKE2)
PFDN6 has been implicated in adaptive immu-
nity and cancer. The PFDN6 encoding gene, 
HKE2, is located in the centromeric portion of 
the region encoding the genes of the MHC class 
II complex (Ostrov et  al. 2007). 
Immunohistochemical analyses of human benign 
tissues and cancer tissues showed that PFDN6 
was upregulated in colon, thyroid, breast, ovar-
ian, and brain tumors (Ostrov et  al. 2007). By 
contrast, a more recent study showed that PFDN6 
was downregulated in dexamethasone-resistant 
acute lymphoblastic leukemia, suggesting that 
PFDN6 could participate in antigen processing in 
lymphocytes (Dehghan-Nayeri et al. 2017).
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4.2.3	 �Other PAQosome Subunits

4.2.3.1	 �RPB5 (POLR2E)
RPB5 is a 23-kDa subunit present in all three 
RNAPs (Pati and Weissman 1989; Zaros et  al. 
2007). It has a bipartite structure that contains a 
eukaryotic-specific N-terminal domain and a 
C-terminal domain resembling the archaeal 
RNAP subunit H (Fig.  4.1) (Thiru et  al. 1999; 
Todone et  al. 2000). The N-terminal domain 
cross links with the DNA helix between positions 
+5 and +  15 (Kim et  al. 1997), whereas the 
C-terminal domain contacts RPB1 (Cramer et al. 
2000). RPB5 may be involved in RNAP assem-
bly by providing a large interaction interface to 
most of the other subunits (Acker et  al. 1997). 
Within the assembled RNAP II complex, RPB5 
is not part of the catalytic domain (Armache et al. 
2005; Bushnell and Kornberg 2003; Cramer et al. 
2000; Gnatt et al. 2001). Rather, RPB5 is part of 
the lower jaw of the DNA binding cleft and is 
involved in the coordination of RNAP II opening 
and closing (Bushnell et al. 2002; Cramer et al. 
2000; Zaros et al. 2007).

RPB5 has several roles as a transcriptional 
regulator. An early report in yeast suggested that 
RPB5 and RPB1-CTD have overlapping roles in 
transcription activation (Miyao and Woychik 
1998). More recently, RPB5 was shown to modu-
late transcription elongation dynamics by influ-
encing the phosphorylation state of the RPB1 
CTD at Ser5 and Ser2, thereby affecting its asso-
ciation with elongation factor Spt5 (Martinez-
Fernandez et  al. 2018). In addition, RPB5 
interacts with several transcription factors and 
gene specific regulators such as URI1 (Dorjsuren 
et al. 1998), TFIIB (Lin et al. 1997), TFIIF (Le 
et al. 2005; Wei et al. 2003), RSC4 (Soutourina 
et al. 2006), POLR2M (Jishage et al. 2012), and 
protein X of the Hepatitis B virus (Cheong et al. 
1995).

4.2.3.2	 �WDR92 (Monad)
WDR92 is a WD40 repeat protein that contains 
seven WD40 sequences (Saeki et  al. 2006; Xu 
and Min 2011) (Fig. 4.1). The WD40 repeats fold 
into a β-propeller architecture, a defining charac-
teristic of all WD40 motifs (Neer et al. 1994; Xu 

and Min 2011). WDR92 was shown to interact 
directly or indirectly with PIH1D1 in mammalian 
cells (Inoue et al. 2010). In addition, WDR92 and 
RPAP3 are also proposed to interact (Itsuki et al. 
2008; van der Voorn and Ploegh 1992). In human 
tissues, WDR92 and RPAP3 expression were 
shown to be highest in the testis (Itsuki et  al. 
2008; Saeki et  al. 2006). Given that WDR92 is 
absent in yeast and that RPAP3 is approximately 
six times larger than yeast Tah1, WDR92 may 
have evolved to serve as a scaffold for protein-
protein interactions, a common function for 
WD40 repeat proteins.

WDR92 may also have a tumor suppressor 
role since its overexpression in HEK293 cells 
potentiated CHX- and TNFα-induced apoptosis 
(Saeki et al. 2006). In addition, WDR92 binds to 
the exosome component OIP2, which is involved 
in pre-rRNA processing, and degrades amphi-
regulin mRNA encoding an EGFR ligand that 
increases tumor invasiveness (Saeki et al. 2013).

4.3	 �PAQosome-Mediated 
Complex Assembly

4.3.1	 �PAQosome-Mediated 
Assembly of L7Ae 
Ribonucleoprotein

The L7Ae family of RNA binding proteins are 
part of various RNP complexes that are essential 
for tRNA processing, translation, and RNA mod-
ification. The PAQosome has been implicated in 
the assembly of L7Ae RNPs involved in RNA 
modification, which include the snoRNP com-
plexes (Watkins et al. 1998, 2000), the telomer-
ase RNP complex (Watkins et  al. 1998), the 
SECIS mRNPs (Allmang et al. 2002; Copeland 
et  al. 2000), the U4 snRNP complex (Nottrott 
et al. 1999), and the U5 snRNP (Newman 1997). 
The PAQosome recognizes specific prospective 
client RNP complexes through various adaptor 
proteins.

The assembly of snoRNP complexes and their 
localization to the nucleolus is essential for pre-
rRNA maturation. snoRNPs contain snoRNA 
that can be classified into several types based on 
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conserved sequence elements including: box C/D 
snoRNA and box H/ACA snoRNA. The snoRNA 
sequences are complementary to rRNA sequences 
to guide nucleotide modification in the nucleolus. 
The core proteins of box C/D and box H/ACA 
process pre-rRNA through site-specific 
2’-O-methylation and pseudoridylation, respec-
tively. Binding of core proteins to snoRNA also 
protects snoRNA from exonuclease-mediated 
degradation (Kufel et al. 2000).

4.3.1.1	 �Box C/D snoRNP Assembly
The box C/D snoRNP complex is comprised of 
box C/D snoRNA, L7Ae protein SNU13, the 
methyltransferase FBL, and the core proteins 
NOP56 and NOP58 (Snu13, Nop1, Nop56, and 
Nop58  in yeast, respectively) (Fig.  4.4a). The 
first study to demonstrate a functional role for 
yeast R2TP showed that it was required for box 
C/D snoRNA accumulation and for pre-rRNA 
processing (Zhao et al. 2008), suggesting a pos-
sible role of R2TP in box C/D snoRNP assembly. 
These findings were supported by additional 
studies, which demonstrated that Pih1 interacted 
and stabilized box C/D snoRNP component 
Nop58 (Gonzales et al. 2005; Zhao et al. 2008), 
and that Rvb1 and Rvb2 associated with an in 
vitro-assembled mouse U14 snoRNP complex 
(Newman et  al. 2000). In addition, PIH1D1 
knockdown in mammalian cells caused a global 
reduction of box C/D snoRNA levels (McKeegan 
et al. 2007). Furthermore, Rvb1, Rvb2 and Pih1 
deletion yeast strains had reduced box C/D 
snoRNA levels and had mislocalized box C/D 
snoRNP proteins, especially when cells were 
grown under stress conditions (Gonzales et  al. 
2005; Kakihara et al. 2014; King et al. 2001).

In addition to the proposed scaffolding action 
of Pih1, the R2TP complex recruits pre-box C/D 
snoRNP components using assembly factors. 
NUFIP1 (Rsa1 in yeast) was identified in a yeast 
two-hybrid screen using SNU13 as bait (Boulon 
et  al. 2008). NUFIP1 contains a zinc finger 
domain and a conserved PEP domain that is 
essential for SNU13 binding (Boulon et al. 2008). 
In yeast, the interaction between Snu13 and Rsa1 
was essential for cell growth and snoRNP forma-
tion (Rothe et  al. 2014a). NUFIP1 was also 

shown to bind FBL, NOP56, and NOP58 to 
bridge interactions between partially re-
constituted pre-box C/D snoRNP complexes 
(McKeegan et  al. 2007). It was subsequently 
shown that RuvBL1/2 hexamers could also 
bridge interactions between the core box C/D 
proteins more efficiently than NUFIP1, and that 
these interactions were dependent on ATP bind-
ing (McKeegan et  al. 2009). NUFIP1 was also 
shown to bind to RuvBL1 and RuvBL2, suggest-
ing that NUFIP1 connected pre-box C/D snoRNP 
complexes to the R2TP complex (McKeegan 
et al. 2007). Indeed, an in vivo systematic quanti-
tative stable isotope labeling proteomic study 
showed that NUFIP1 existed in a protein-only 
pre-snoRNP complex containing RuvBL1, 
RuvBL2, SNU13, NOP58 and two other assem-
bly factors, ZNHIT3 and ZNHIT6 (Fig.  4.4a) 
(Bizarro et al. 2014).

ZNHIT3 and ZNHIT6 (Hit1 and Bcd1  in 
yeast, respectively) also facilitate box C/D 
snoRNP assembly by acting as scaffolds or by 
stabilizing complex intermediates. They contain 
zinc finger domains comprised of seven cysteines 
and one histidine, called the HIT domain. In 
yeast, Hit1 binds to Rsa1 and contributes to in 
vivo box C/D snoRNA stability and pre-RNA 
maturation kinetics (Rothe et  al. 2014a). 
Moreover, the Hit1-Rsa1 heterodimer can inter-
act with Snu13 to make a heterotrimer, which can 
subsequently bind to box C/D snoRNA and 
Nop58 to form a complex intermediate in vitro 
(Rothe et al. 2014b). Bcd1 was identified as an 
essential protein in yeast that interacts with Rsa1, 
Rvb1, and Rvb2 to maintain box C/D snoRNA 
levels in an ATP-dependent manner (McKeegan 
et al. 2007, 2009; Peng et al. 2003).

4.3.1.2	 �Box H/ACA snoRNP Assembly
The box H/ACA snoRNP complex is comprised 
of box H/ACA snoRNA, L7Ae protein NHP2, 
the pseudouridine synthase DKC1, and the core 
proteins GAR1 and NOP10 (Fig. 4.4b). Assembly 
of box H/ACA snoRNP complex is dependent on 
the assembly factors SHQ1, NAF1 and the R2TP 
complex. SHQ1 binds DKC1  in a vicelike grip 
prior to its assembly with NHP2, NOP10 and 
NAF1 (Grozdanov et al. 2009). PIH1D1 interacts 
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Fig. 4.4  snoRNP complex assembly
R2TP-mediated assembly of (a) box C/D snoRNP, (b) 
box H/ACA snoRNP and (c) telomerase RNP. R2TP sub-

units (purple), assembly factors (green), snoRNP complex 
protein subunits (blue), nucleotides (ATP, yellow circles; 
ADP, white circles), and RNA are shown
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with DKC1 to recruit DKC1-SHQ1 to the R2TP 
complex where RuvBL1 and RuvBL2 interact 
with DKC1-SHQ1 in an ATP-independent man-
ner (Machado-Pinilla et al. 2012). Alternatively, 
NHP2 could be recruited to the R2TP complex 
through a PIH1D1-NUFIP1-NHP2 interaction 
(Boulon et al. 2008). Dissociation of SHQ1 from 
DKC1 requires the entire R2TP complex and 
additional cytosolic factors, but not RuvBL1/2 or 
Hsp90 ATPase activity (Machado-Pinilla et  al. 
2012). However, an earlier study in yeast showed 
that Rvb2 ATPase activity was required for box 
H/ACA snoRNA production (King et al. 2001). 
ATP binding and hydrolysis may be needed for 
the dissociation of DKC1 from the R2TP com-
plex during snoRNP maturation. NAF1 then 
escorts the pre-box H/ACA complex to nascent 
H/ACA RNA (Darzacq et  al. 2006; Grozdanov 
et al. 2009). Lastly, the complex is shuttled to the 
nucleoli where NAF1 is replaced by GAR1 
(Darzacq et al. 2006).

4.3.1.3	 �Telomerase Assembly
The telomerase RNP complex adds DNA repeats, 
known as telomeres, to the ends of chromosomes 
after DNA replication. It is comprised of L7Ae 
protein NHP2, pseudouridine synthase DKC1, 
core proteins GAR1 and NOP10, reverse tran-
scriptase TERT, and the RNA component TERC 
(Fig. 4.4c). NUFIP1/PIH1D1 was shown to bind 
NHP2, and this interaction may facilitate RuvBL1 
binding to DKC1 (Boulon et al. 2008; Venteicher 
et  al. 2008). In addition, RuvBL1 and RuvBL2 
ATPase activities were required for TERC accu-
mulation, suggesting that RuvBL1/2 facilitates 
the binding of TERC to NHP2-NOP10-DKC1-
GAR1 (Venteicher et  al. 2008). Moreover, 
RuvBL1 was shown to bind TERT and may 
therefore bridge the interactions between TERT 
and the rest of the telomerase RNP complex 
(Venteicher et al. 2008).

4.3.1.4	 �SECIS mRNP Assembly
Selenoproteins are enzymes involved in antioxi-
dant defence, redox homeostasis and immune 
responses (Lu and Holmgren 2009). Transcribed 
selenoprotein mRNAs associate with selenopro-
tein mRNPs for translational recoding of a UGA 

codon which enables the insertion of selenocys-
teine (Berry et al. 1991). Selenoprotein mRNPs 
are comprised of selenoprotein mRNA, L7Ae 
protein SBP2 and the elongation factor EFsec 
(Copeland et  al. 2000; Fagegaltier et  al. 2000). 
SBP2 binds to NUFIP1, and it has recently been 
shown that SBP2 also interacts with the SMN 
complex (Boulon et  al. 2010; Gribling-Burrer 
et  al. 2017). Similar to U4 snRNP assembly, 
R2TP/NUFIP1 may directly interact with the 
SMN complex and SBP2 to facilitate SPB2 bind-
ing to selenoprotein mRNA.

4.3.1.5	 �U4 snRNP Assembly
The U4 snRNP has a regulatory role within the 
spliceosome machinery and is comprised of U4 
snRNA, L7Ae protein SNU13 and the pre-mRNA 
splicing component PRP31 (Fig.  4.5a). The 
assembly of the U4 snRNP is dependent on 
NUFIP1/R2TP and the heptameric SMN com-
plex that loads snRNA onto snRNP complexes 
(Bizarro et  al. 2015). PRP31 associates with 
SNU13, ZNHIT3 and NUFIP1/R2TP within 
Cajal bodies; however, the exact role of R2TP is 
not clear. Since RuvBL1 and RuvBL2 interacted 
with PRP31 in a yeast two-hybrid screen, the role 
of PIH1D1/NUFIP1 may be to recruit PRP31-
SNU13 to RuvBL1/2, RPAP3 and Hsp90 to 
mediate their proper folding and assembly 
(Bizarro et  al. 2015). The PRP31-SNU13-
ZNHIT3-NUFIP1-R2TP complex subsequently 
associates with the SMN complex, with NUFIP1 
making direct interactions with SMN subunits 
Gemin3 and Gemin6 (Bizarro et  al. 2015). The 
SMN complex facilitates U4 snRNA loading to 
PRP31 and SNU13 (Bizarro et al. 2015). Upon 
maturation, ZNHIT3-NUFIP1-R2TP dissociate 
from the complex (Fig. 4.5a).

4.3.2	 �U5 snRNP Assembly

The U5 snRNP is also part of the spliceosome 
machinery and is involved in aligning two exons 
for ligation (Newman 1997). It is comprised of 
U5 snRNA, the GTPase EFTUD2, the helicase 
SNRNP200, and the mRNA processing factor 
PRP8 (Fig. 4.5b). EFTUD2 and PRP8 are assem-
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bled into a subcomplex by the AAR2 chaperone 
(Boon et  al. 2007; Gottschalk et  al. 2001). 
EFTUD2-PRP8 associate with U5 snRNA and 
then translocate to the nucleus where AAR2 is 
replaced by SNRNP200 (Boon et  al. 2007). 
EFTUD2 and PRP8 regulate SNRNP200 activity, 
which unwinds the U4/U6 duplex to activate the 
spliceosome.

The R2TP complex was found to associate 
with PRP8 and EFTUD2  in the cytoplasm, and 
with SNRNP200 in the nucleus (Malinova et al. 
2017). ZNHIT2 was identified as a putative U5 
snRNP assembly factor when it was shown to 
associate with GFP-AAR2 (Malinova et  al. 
2017). ZNHIT2 was subsequently shown to asso-
ciate with all U5 snRNP protein components and 
with all PAQosome subunits, except PDRG1 and 
RPB5 (Malinova et  al. 2017), suggesting that 
ZNHIT2 bridges the interactions between U5 
snRNP components and the PAQosome. ZNHIT2 
was found to bind to RuvBL2 (Cloutier et  al. 
2017).

Although EFTUD2 can interact with PIH1D1, 
its phosphorylation, which is essential for U5 

snRNP maturation, causes its interaction with 
PIH1D1 to become weaker (Malinova et  al. 
2017). Additionally, depletion of PIH1D1 
enhanced PRP8 interaction with R2TP (Malinova 
et  al. 2017). Furthermore, ZNHIT2 knockdown 
in HEK293 cells had reduced levels of RuvBL1 
and RuvBL2 in PRF8- and EFTUD2-based puri-
fications, while all other PAQosome subunits 
were not detected (Cloutier et  al. 2017). These 
findings confirm that ZNHIT2 bridge interactions 
between U5 snRNP and RuvBL1/2 and suggest 
that only RuvBL1/2 are needed for later stages of 
U5 snRNP assembly.

Proper U5 snRNP assembly was also shown 
to depend on ECD, which interacts with the 
R2TP complex (Cloutier et  al. 2017). ECD can 
bind to PIH1D1 in a phosphorylation-dependent 
manner and to RuvBL1  in a phosphorylation-
independent manner (Horejsi et  al. 2014; Mir 
et  al. 2015). In addition, ECD interacted with 
AAR2 and with all components of the U5 snRNP 
(Claudius et  al. 2014). Therefore, along with 
ZNHIT2, ECD bridges interactions between the 
R2TP complex and U5 snRNP (Mir et al. 2016).

Fig. 4.5  snRNP complex assembly
R2TP-mediated assembly of (a) U4 snRNP and (b) U5 
snRNP. R2TP subunits (purple), assembly factors (green), 

snRNP complex protein subunits (blue), SMN complex 
(grey), and RNA are shown
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4.3.3	 �PAQosome–Mediated 
Assembly of RNAP II

The RNAP II complex, which synthesizes 
mRNAs and capped noncoding RNAs, is com-
prised of 12 subunits that assemble in a stepwise 
fashion partly through PAQosome interactions 
(Fig. 4.6) (Boulon et al. 2010). Quantitative pro-
teomics using SILAC on cells treated with RPB1 
inhibitor α-amanitin and RPB1 nuclear exportin 
inhibitor leptomycin B revealed that cytoplasmic 
RPB1 and RPB8 formed a tight subcomplex that 
associated with PAQosome components RPAP3, 
PFDN2, and UXT (Boulon et  al. 2010). Yeast 
two-hybrid and co-immunoprecipitation experi-
ments confirmed RPB1 interactions with UXT 
and RPAP3 (Boulon et  al. 2010). The RPB1-
RPB8 subcomplex was stabilized through an 
RPAP3-mediated Hsp90 interaction (Boulon 
et  al. 2010). Another study showed that RPB5 
binds to and is stabilized by the non-canonical 
prefoldin subunit URI1 (Mita et  al. 2013), sug-
gesting that the RPB5-URI1 prefoldin complex 
may act as a scaffold for RPB1-RPB8 recruit-
ment to RPAP3-Hsp90.

The SILAC proteomic analysis also showed 
that another subcomplex, comprised of RPB2-
RPB3-RPB10-RPB11-RPB12, was also present 
after cells were treated with α-amanitin and lep-
tomycin B (Boulon et  al. 2010). When GFP-
RPAP3 was used as bait, RPAP3 co-purified with 
RPB2, suggesting that RPAP3 may also mediate 
the interaction between the RPB1-RPB8 sub-
complex and the RPB2-RPB3-RPB10-RPB11-
RPB12 subcomplex (Boulon et  al. 2010). To 

complete RNAP II assembly, RPB4-RPB7-RPB6 
and RPB9 are integrated into the complex 
(Fig. 4.6). Finally, RNAP II nuclear translocation 
is mediated through its association with RPAP2 
(Forget et al. 2013).

The PAQosome may also be involved in 
RNAP I and RNAP III assembly. In yeast, Bud27 
interacted with RNAP I- and RNAP III-specific 
subunits, Rpa190 and Rpc25, respectively 
(Miron-Garcia et al. 2013). Bud27 mutant strains 
exhibited cytoplasmic accumulation of all 
RNAPs, and this defect was rescued by Rpb5 
overexpression (Miron-Garcia et al. 2013). URI1/
Bud27 may facilitate the correct assembly of 
Rpb5 with Rpb6, both of which are common to 
all three RNAPs (Miron-Garcia et  al. 2013). In 
mammalian cells, affinity purification coupled to 
mass spectrometry experiments have also shown 
that R2TP/URI1 prefoldin subunits interact with 
components of all three RNAPs (Cloutier et  al. 
2009,  2017). These findings suggest that the 
PAQosome may have a general role for RNAP 
assembly.

4.3.4	 �PAQosome-Mediated 
Assembly of PIKK Complexes

The PIKK family of kinases and kinase-related 
proteins are essential for several fundamental 
biological processes such as DNA damage repair 
(ATM, ATR, DNA-PKc) (Shiloh 2003), nutrient 
signaling (mTOR) (Wullschleger et  al. 2006), 
non-sense mediated mRNA decay (SMG-1) 
(Yamashita et al. 2005), and chromatin remodel-

Fig. 4.6  RNAP II complex assembly and stabilization
PAQosome-mediated assembly of RNAP II.  R2TP sub-
units (purple), URI1 prefoldin subunits (green), RNAP II 

subunits (yellow) and Hsp90 (red) are shown. WDR92 has 
been omitted for clarity
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ing (TRRAP) (McMahon et al. 2000). In response 
to energy status and metabolic stress, the R2TP 
complex regulates cell growth and proliferation 
by affecting PIKK protein levels, assembly, sta-
bilization and signaling (Horejsi et  al. 2010; 
Izumi et  al. 2010, 2012) (Fig.  4.7). Similar to 
RNAP II, PIKK complex assembly and stabiliza-
tion is also dependent on Hsp90 activity (Izumi 
et al. 2012; Takai et al. 2010).

The adaptor TTT complex, comprised of 
TEL2, TTI1 and TTI2, plays an essential role in 
R2TP-mediated PIKK assembly and stabilization 
(Fig. 4.7) (Horejsi et al. 2010; Hurov et al. 2010; 
Kaizuka et al. 2010; Takai et al. 2007, 2010). The 
TTT complex itself is essential and each subunit 
was shown to depend on another for stability 
(Hurov et al. 2010). In MEF cells grown under 
nutrient-rich conditions, the TTT complex was 
found to interact with RuvBL1/2 to assemble and 
stabilize active dimeric mTORC1 (mTOR, 
Deptor, MLST8, Raptor, PRAS40) at the lyso-
some (Kim et  al. 2013; Yip et  al. 2010). 
Interactions between mTOR and RuvBL1/2 are 
mediated by the adaptor protein WAC and 
PIH1D1 (David-Morrison et  al. 2016; Kamano 
et al. 2013). In MCF-7 cells, PIH1D1 knockdown 

decreased mTORC1 assembly (Kamano et  al. 
2013).

The N-terminal of PIH1D1 was revealed to 
interact with TEL2  in a CK2-phosphorylation 
dependent manner (Horejsi et al. 2014, 2010; Pal 
et  al. 2014). Phosphorylated TEL2 at S487 and 
S491 is required for PIH1D1 binding, and ala-
nine mutations at these sites resulted in unstable 
mTOR and SMG-1 in MEF cells (Horejsi et al. 
2010). In myeloma cells grown under nutrient-
depleted conditions, CK2 phosphorylated TEL2 
at S485 and TTI1 at S828 to facilitate their 
Fbxo-9 mediated-ubiquitination and proteasomal 
degradation when in complex with mTORC1 
(Fernandez-Saiz et al. 2013) (Fig. 4.6).

In addition to mTORC1, the TTT complex 
and presumably R2TP are also essential for the 
assembly and stability of all other PIKKs. TEL2 
deletion in MEFs reduced levels of PIKKs and 
affected the stability of ATM and mTOR (Takai 
et  al. 2007). Hsp90 inhibition in HeLa cells 
affected TEL2 interactions with PIKKs and 
resulted in unstable ATR, mTORC1 and mTORC2 
(mTOR, Deptor, MLST8, MAPKAP1, Rictor, 
Proctor) complexes (Takai et  al. 2010). In 
HEK293T cells, TTI1 interacted with and stabi-

Fig. 4.7  Nutrient-dependent mTORC1 complex 
assembly and stabilization
R2TP-Hsp90-mediated assembly, stabilization and dimer-
ization of the mTORC1. R2TP subunits (purple), Hsp90 

(red), mTORC1 assembly factors (green), mTORC1 
(blue), ubiquitin (brown circles), Fbxo9 (brown box), 
CK2 (grey box) and nucleotides (ATP, yellow ovals; ADP, 
white ovals) are shown
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lized all six members of the PIKK family, and 
knockdown of TTI and TEL2 caused disassembly 
of mTORC1 and mTORC2 (Kaizuka et al. 2010). 
In addition, TTI1 can be phosphorylated by 
IP6K2 to enhance its ability to bind and stabilize 
DNA-PKcs and ATM (Rao et al. 2014). In yeast, 
Tti2 depletion resulted in decreased expression 
of Tra1 (TRRAP), Tel1 (ATM), and Mec1 (ATR), 
affected their localization, and inhibited stress 
responses (Hoffman et al. 2016; Kim et al. 2013). 
Furthermore, in addition to the TTT-Pih1 interac-
tion, the TTT complex interacted with Asa1-
Rvb1-Rvb2 to stabilize Tel1 and Mec1 (Goto 
et al. 2017).

4.3.5	 �PAQosome-Mediated 
Assembly of the MRN 
Complex

The MRN complex is essential for sensing and 
repairing DNA double strand breaks (Cannavo 
and Cejka 2014; Paull and Gellert 1998). The 
complex is comprised of exonuclease MRE11, 
DNA repair protein RAD50, and DNA damage 
sensor and PIKK scaffold protein NBS1. The 
complex associates with TRRAP and activates 
ATM and ATR as part of the DNA damage 
response (Buis et  al. 2008; Robert et  al. 2006; 
Zhong et  al. 2005). Mutations in MRE11 and 
NBS1 have been linked to ataxia-telangiectasia-
like disorder and Nijmegen breakage syndrome, 
respectively (Stewart et  al. 1999; Varon et  al. 
1998), while mutations in both have been found 
in patients with breast and colon cancer (Chubb 
et al. 2016; Heikkinen et al. 2006).

The MRN complex may be stabilized by the 
PAQosome through the direct interaction between 
MRE11 and PIH1D1 (von Morgen et al. 2017). 
The interaction motifs on MRE11 are similar to 
the DpSDD/E CK2-phosphorylation dependent 
motifs on TEL2 (Horejsi et al. 2014; von Morgen 
et  al. 2017). In addition, MRE11 must also be 
phosphorylated by CK2 at S688 and S689 before 
binding to PIH1D1 (von Morgen et al. 2017). In 
contrast to TEL2, MRE11 is further stabilized by 
additional phosphoserine sites. Point mutations 
in MRE11 at S688 and S689 caused a significant 

reduction in PIH1D1 binding, whereas additional 
mutations at S558, S561 and S649 completely 
abolished PIH1D1 binding (von Morgen et  al. 
2017).

4.3.6	 �PAQosome-Mediated 
Assembly of the TSC Complex

The TSC complex, comprised of TSC1, TSC2 
and TBC1D7, acts as a tumor suppressor by 
inhibiting mTORC1 activity (Dibble et al. 2012; 
Huang and Manning 2008; Inoki et  al. 2002). 
TSC1 and TSC2 mutations have been linked to 
tuberous sclerosis (Inoki et al. 2002; Kandt et al. 
1992; van Slegtenhorst et  al. 1997), which is a 
rare genetic disorder that causes non-malignant 
tumors to form in many different organs. TSC1 
and TBC1D7 each have regulatory roles within 
the TSC complex. TSC1 stabilizes TSC2 to pre-
vent its ubiquitin mediated degradation 
(Benvenuto et  al. 2000), while TBC1D7 stabi-
lizes the TSC1-TSC2 interaction (Dibble et  al. 
2012). TSC2 is a GTPase activating protein that 
targets G-protein Rheb and induces the dissocia-
tion of Rheb-GDP from mTORC1, resulting in 
the inactivation of mTORC1 (Inoki et al. 2003; 
Tee et al. 2003; Zhang et al. 2003).

The TSC complex may be stabilized through 
its interactions with PAQosome subunits. TSC1 
and TSC2 were shown to associate with ectopi-
cally expressed URI1 and RPAP3 in HeLa cells 
(Cloutier et al. 2017). Another study showed that 
the N-terminal domain of PIH1D1 pulled down 
all three subunits of the TSC complex (Malinova 
et  al. 2017). TAP-MS of all components of the 
TSC complex showed associations with RuvBL1, 
RuvBL2, WDR92, PIH1D1, RPAP3 and URI1 
(Cloutier et al. 2017).

The significance of TSC complex interactions 
with the PAQosome are uncertain at this time. 
TSC1- and TBC1D7-based purifications did not 
yield high levels of TSC2, suggesting that TSC1 
and TBC1D7 form a subcomplex (Cloutier et al. 
2017). Therefore, binding of TSC1-TBC1D7 to 
TSC2 may be mediated by the PAQosome. 
Moreover, TSC1 was recently shown to be an 
Hsp90 co-chaperone that inhibits Hsp90 chaper-
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one function, suggesting that the PAQosome may 
also function as a scaffold that bridges the inter-
action between TSC1 and Hsp90 (Woodford 
et  al. 2017). Alternatively, the PAQosome may 
bind to the TSC complex as a way to block its 
inhibitory effect on mTORC1, during PAQosome-
mediated mTORC1 stabilization (Huang and 
Manning 2008).

4.3.7	 �PAQosome-Mediated 
Assembly of Axonemal 
Dynein Arm Assembly

Cilia are small microtubule-based organelles that 
have roles in cell and fluid motility. Non-motile 
cilia consist of a ring of nine microtubule dou-
blets called the axoneme. By contrast, motile 
cilia consist of an axoneme, as well as a central 
pair of microtubules in a 9 + 2 arrangement. In 
addition, the peripheral microtubules are attached 
to one another through dynein arms that provide 
the force needed for cilia movement. The dynein 
arms are preassembled in the cytoplasm before 
they are transported into the ciliary axoneme.

It has recently been demonstrated that RuvBL1 
and RuvBL2 facilitate axonemal dynein arm 
assembly through R2TP-like complexes (Hartill 
et  al. 2018; Li et  al. 2017). Loss of function 
mutants of RuvBL1 and RuvBL2  in zebrafish, 
and a conditional knockout mouse model of 
RuvBL1 showed cilia motility defects (Li et al. 
2017). Additionally, RuvBL2 interaction with 
dynein arm assembly factor LRRC6 was essen-
tial for cilia motility in zebrafish (Zhao et  al. 
2013). Furthermore, the dynein assembly factor 
DNAAF1 was shown to interact with RuvBL1/2 
to facilitate axonemal dynein arm assembly dur-
ing zebrafish cardiac development (Hartill et al. 
2018).

RuvBL1/2 also associate with dynein assem-
bly factors that show sequence similarities to 
PIH1D1 and RPAP3. The dynein arm assembly 
factors PIH1D2, PIH1D3 and DNAAF2 have the 
PIH1 domain (Omran et  al. 2008; Yamaguchi 
et  al. 2018), whereas DNAAF4 has both PIH1 
and TPR domains (Tarkar et al. 2013). Similar to 

Tah1, DNAAF4 can also bind to Hsp90 (Chen 
et al. 2009). In zebrafish, mutations in PIH1- con-
taining proteins PIH1D1, PIH1D2, PIH1D3 and 
DNAAF2 resulted in dynein arm loss and abnor-
mal sperm motility (Yamaguchi et al. 2018). In 
addition, mutations in PIH1D3 caused defects in 
dynein arm assembly in mouse sperm and have 
been associated with X-linked primary ciliary 
dyskinesia in humans (Dong et al. 2014; Olcese 
et al. 2017).

WDR92 is also essential for dynein arm 
assembly. In humans, WDR92 is highly 
expressed in motile ciliated cells (Saeki et  al. 
2006), and WDR92 was required for the correct 
assembly of motile cilia in S.  Mediterranea 
(Patel-King and King 2016). Moreover, WDR92 
was essential for dynein arm assembly in 
Drosophila and associated with Spag1 (Zur Lage 
et al. 2018). In mammalian cells, WDR92 binds 
to RPAP3, potentially through the RPAP3 
C-terminal domain (Itsuki et  al. 2008). This 
domain is also present in an RPAP3-like protein 
named SPAG1 (not the RPAP3 Drosophila 
ortholog), as well as the ciliary dynein assembly 
factor CCDC103 (Chintalapudi et  al. 2016; 
Knowles et al. 2013). Mutations in each of these 
proteins are associated with primary ciliary dys-
kinesia (Knowles et  al. 2013; Panizzi et  al. 
2012). WDR92 was shown to interact with 
SPAG1, most likely as part of an R2TP-like 
complex that exclusively mediates dynein arm 
assembly (Cloutier et al. 2017).

Furthermore, SPAG1 was recently demon-
strated to be part of an R2TP-like complex named 
R2SP which stands for RuvBL1-RuvBL2-
SPAG1-PIH1D2 (Maurizy et  al. 2018). 
Components of this novel complex were highly 
enriched in testis, suggesting a potential role in 
motile cilia formation (Maurizy et  al. 2018). 
Similar to the R2TP complex, the R2SP complex 
also displayed chaperone activity. The R2SP 
complex was required for the assembly of com-
plexes containing the scaffolding protein 
liprin-α2 (Maurizy et  al. 2018). Interestingly, 
quaternary protein folding and assembly was 
strongest at 32°C, the optimal temperature for 
testis function (Maurizy et al. 2018).
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4.4	 �The Potential Roles 
of the URI1 Prefoldin 
Complex

The role of the canonical prefoldin complex has 
been well established, whereas the role of the 
URI1 prefoldin complex has remained elusive 
since its initial discovery in 2003 (Gstaiger et al. 
2003). The canonical prefoldin complex is 
known to be a chaperone mainly for cytoskele-
ton proteins actin, α-tubulin, and γ-tubulin 
(Geissler et al. 1998; Martin-Benito et al. 2002), 
suggesting that the URI1 prefoldin complex 
may have a related role in cytoskeleton protein 
complex assembly. Surprisingly, RNAi deple-
tion of URI1, UXT, and PDRG1 in Drosophila 
sensory neurons and spermatocytes had no 
effect on ciliary dynein arm assembly (Zur Lage 
et al. 2018). Alternatively, similar to the recruit-
ment mechanism between the canonical pre-
foldin complex and the CCT complex (Vainberg 
et  al. 1998), the URI1 prefoldin complex may 
recruit client proteins to R2TP; however, a 
PAQosome client that binds specifically to the 
URI1 prefoldin complex has not been 
identified.

Studies investigating the non-nuclear roles of 
URI1 have provided some insight for potentially 
more specialized roles of the URI1 prefoldin 
complex and its effects on the R2TP complex. 
URI1 is the most structurally diverse subunit 
within the prefoldin family and likely mediates 
most URI1 prefoldin complex functions and 
interactions (Figs. 4.1 and 4.2). This is supported 
by the fact that the other URI1 prefoldin subunits 
do not have any significant roles outside of the 
nucleus.

One potential role for the URI1 prefoldin 
complex may be that it acts as a scaffold for 
RNAP II assembly. URI1 was initially reported 
as an RPB5 binding protein (Dorjsuren et  al. 
1998). Additionally, UXT was shown to interact 
with RPB1 in a yeast two-hybrid screen (Boulon 
et al. 2010). Although a scaffolding function for 
the URI1 prefoldin complex is probable, the 
URI1 prefoldin complex more likely evolved for 
more specialized roles since URI1 is conserved 
in yeast, while UXT and PDRG1 are absent.

Canonical prefoldin subunits stabilize and 
protect each other from ubiquitin-mediated deg-
radation, and it was shown that PFDN2 and 
PFDN6 have longer half-lives than the other 
canonical prefoldin subunits, most likely because 
of their association with the URI1 prefoldin com-
plex (Gstaiger et al. 2003; Simons et al. 2004). In 
a similar fashion, another possible role for the 
URI1 prefoldin complex may be to simply stabi-
lize and protect each subunit of the complex from 
ubiquitin-mediated degradation before they are 
imported into the nucleus where they function as 
transcriptional regulators (Table  4.3). Indeed, 
URI1 was shown to affect the stability of UXT, 
PDRG1 and RPB5 (Mita et  al. 2011, 2013). 
However, this hypothesis does not explain why 
the URI1 prefoldin complex associates with the 
R2TP complex.

The URI1 prefoldin complex may regulate the 
cellular localization of the PAQosome (Fig. 4.8). 
URI1 was reported to act as an effector of mTOR 
nutritional signaling (Gstaiger et  al. 2003), and 
our group had demonstrated that localization of 
the R2TP complex depends on nutritional status 
(Kakihara et  al. 2014). In yeast grown under 
nutrient rich conditions, the R2TP complex was 
localized in the nucleus, whereas under nutrient 
limiting conditions, the R2TP complex was local-
ized in the cytoplasm (Kakihara et  al. 2014). 
When URI1 was overexpressed in HLE hepa-
toma cells, it interacted with DMAP1 to facilitate 
its nuclear import (Delgermaa et al. 2004); how-
ever, when URI1 was overexpressed in prostate 
cancer cells, it failed to interact or colocalize with 
DMAP1 (Mita et al. 2013). Nevertheless, a pro-
teomic analysis identified all subunits of the 
PAQosome as nuclear URI1 interactors (Mita 
et al. 2013).

URI1 may also be involved in the nuclear 
import of PAQosome-bound RNAP II (Fig. 4.8). 
siRNA-mediated URI1 silencing in pulmonary 
fibroblasts resulted in the cytoplasmic accumula-
tion of RPB1 (Miron-Garcia et  al. 2013). 
Furthermore, mutant yeast strains lacking Bud27 
resulted in the cytoplasmic accumulation of all 
three RNAPs (Miron-Garcia et al. 2013). When 
prostate cancer cells were treated with a com-
pound that stalled RNAP II on DNA, but did not 
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induce its disassembly, URI1 was mostly nuclear 
(Mita et al. 2013), suggesting that the PAQosome 
could potentially stabilize RNAP II during tran-
scription. URI1 was shown to interact with the 
nuclear exportin CRM1, the same exportin used 
by RNAP subunits, to facilitate its export into the 
cytosol (Fornerod et al. 1997; Mita et al. 2013). 
Taken together, these findings suggest that in 
addition to a scaffolding role, the URI1-RPB5 
interaction may be essential for PAQosome 
nuclear localization and its continued stabiliza-
tion within the nucleus.

If the URI1 prefoldin complex indeed stabi-
lizes the R2TP complex, then the PAQosome 
may regulate itself through a negative feedback 
mechanism that depends on cellular energy status 
(Fig.  4.8). Under nutrient limited conditions, 
URI1 is phosphorylated by PKA at S371 and 
cannot bind PP1γ (Buren et  al. 2016). Under 
nutrient rich conditions, non-phosphorylated 
URI1 is bound to PP1γ and OGT, which subse-
quently enhances c-myc levels to promote cell 
growth (Buren et  al. 2016). URI1 phosphoryla-

tion may therefore affect the structural integrity 
of the PAQosome. Many other post-translational 
modification sites on URI1 have been identified, 
but their significance is unknown (Mita et  al. 
2013).

URI1 may play a key role in R2TP-mediated 
assembly pathways related to cell proliferation 
and survival (Fig. 4.8), which would explain why 
URI1 is perhaps the most overexpressed 
PAQosome subunit in cancer (Fan et  al. 2014; 
Gomes et al. 2016; Gu et al. 2013; Gu et al. 2015; 
Hu et  al. 2016; Lipinski et  al. 2016; Luo et  al. 
2016; Theurillat et al. 2011; Tummala et al. 2014, 
2017; Wang et al. 2014, 2015b; Xu et al. 2017; 
Yang et al. 2011, 2013; Zhang et al. 2015; Zhou 
et al. 2014, 2017b). In response to growth factors, 
the R2TP complex stabilizes the mTORC1 com-
plex at the lysosome (Kim et al. 2013; Takai et al. 
2007, 2010). R2TP may also bind to the TSC 
complex to prevent its inhibitory effect on 
mTORC1 (Cloutier et  al. 2017; Malinova et  al. 
2017). The mTORC1 complex activates S6K1, 
which subsequently activates antiapoptotic factor 

Fig. 4.8  Overview of pathways involving the URI1 
prefoldin complex
Letters indicate specific roles of the URI1 prefoldin com-
plex. (a) URI1 is phosphorylated in nutrient depleted con-
ditions which may affect URI1 prefoldin complex 
assembly. (b) URI1 prefoldin complex may stabilize or 
enhance R2TP activity through scaffolding client pro-
teins. (c) The URI1 prefoldin complex may regulate R2TP 
complex activity through a negative feedback mechanism 

involving R2TP client complex mTORC1 and its effector 
S6K1. Activation of S6K1 enhances cell proliferation, 
which is also regulated through negative feedback mecha-
nisms. (d) URI1-RPB5 may mediate RNAP II assembly 
by folding and stabilizing RPB5, or by acting as a scaffold 
for RPB1. (e) DMAP-1 interacts with URI1, which may 
mediate PAQosome-RNAP II nuclear localization. See 
text for more details
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BAD to promote cell survival (Djouder et  al. 
2007; Harada et al. 2001; Theurillat et al. 2011) 
(Fig.  4.8). Activation of S6K1 also phosphory-
lates URI1 which could inhibit the PAQosome 
(Djouder et  al. 2007; Theurillat et  al. 2011). In 
addition, URI1 phosphorylation releases URI1 
bound PPIγ to inactivate BAD through a negative 
feedback mechanism (Djouder et  al. 2007) 
(Fig. 4.8). When URI1 is upregulated in cancer, it 
acts as an oncogene through excessive PPIγ 
phosphatase binding and PAQosome-mediated 
mTORC1 stabilization, which leaves BAD con-
stitutively active, even under low growth factor 
conditions (Theurillat et  al. 2011). Altogether, 
these findings suggest that URI1 acts as the sig-
nal integrator within the PAQosome.

4.5	 �Concluding Remarks

Since the R2TP complex was first identified 
in 2005, remarkable progress has been made in 
understanding the role of R2TP in macromolecu-
lar complex assembly. The recently reported high 
resolution cryo-EM structures of both yeast and 
human R2TP are beginning to shed light on this 
complicated system (Martino et al. 2018; Rivera-
Calzada et al. 2017; Tian et al. 2017). A thorough 
understanding of the R2TP assembly mecha-
nisms would be extremely useful for identifying 
new ways of targeting R2TP client complexes 
that are involved in cancer such as the MRN, 
TSC and mTOR complexes.

In contrast to the R2TP complex, the URI1 
prefoldin complex has gone unnoticed. As we 
have mentioned above, the PAQosome likely 
functions as a single unit in which the URI1 pre-
foldin complex acts as the regulatory module, 
whereas the R2TP complex acts as the catalytic 
component. In order to gain a deeper understand-
ing of how the R2TP complex functions and how 
it is assembled, the role of the URI1 prefoldin 
complex warrants further investigation.
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