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SUMMARY

A comprehensive view of molecular chaperone func-
tion in the cell was obtained through a systematic
global integrative network approach based on
physical (protein-protein) and genetic (gene-gene
or epistatic) interaction mapping. This allowed us to
decipher interactions involving all core chaperones
(67) and cochaperones (15) of Saccharomyces cere-
visiae. Our analysis revealed the presence of a
large chaperone functional supercomplex, which
we named the naturally joined (NAJ) chaperone com-
plex, encompassing Hsp40, Hsp70, Hsp90, AAA+,
CCT, and small Hsps. We further found that many
chaperones interact with proteins that form foci
or condensates under stress conditions. Using an
in vitro reconstitution approach, we demonstrate
condensate formation for the highly conserved
AAA+ ATPases Rvb1 and Rvb2, which are part of
the R2TP complex that interacts with Hsp90. This
expanded view of the chaperone network in the cell
clearly demonstrates the distinction between chap-
erones having broad versus narrow substrate speci-
ficities in protein homeostasis.

INTRODUCTION

Molecular chaperones are a highly interactive group of cellular

proteins that fulfill central roles in all aspects of protein homeo-
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stasis, including protein folding, assembly, and unfolding of

substrates. Chaperones are typically categorized into families

based on their sequence similarity and function. Proteins of

the major chaperone families in the budding yeast Saccharo-

myces cerevisiae are 2 Hsp90s, 14 Hsp70s, 22 Hsp40s, 8

CCTs, 1 Hsp60, 1 Hsp10, 6 prefoldins, 5 ATPases associated

with diverse cellular activities (AAA+), 7 small heat shock pro-

teins (sHsps), and 1 calnexin (total of 67; Table S1; Figure 1A).

In addition, the Hsp70s and Hsp90s function with 4 and 11

partner proteins, respectively, that are termed cochaperones

(total of 15; Table S1; Figure 1A). Despite many mechanistic

and functional studies, the spectrum of cellular substrates

and many of the functions mediated by these chaperones

remain largely undetermined.

Given their involvement in many cellular protein homeostasis

processes, it is necessary to study chaperones at a global

systems level. In 2005, our group published a comprehensive

physical (protein-protein) and genetic (gene-gene or epistatic)

analysis of the yeast Hsp90 chaperone interaction network,

showing the broad role this central chaperone has in many

cellular pathways (Zhao et al., 2005). Subsequently, in 2009,

we published a physical interaction atlas for 63 yeast chaper-

ones (Gong et al., 2009). Here, genetic interaction data from syn-

thetic genetic array (SGA) technology in yeast (Costanzo et al.,

2016) was combined with protein-protein interactions (PPIs) to

systematically build a comprehensive high-fidelity chaperone

network from a total of 67 chaperones and 15 cochaperones.

The network revealed several features of the chaperone func-

tional distribution in the cell, and it indicated the presence of a

functional chaperone supercomplex required for cellular protein

homeostasis.
s 20, 2735–2748, September 12, 2017 ª 2017 The Author(s). 2735
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. CCo Network Based on GI Data

(A) Bar plot showing the yeast chaperones and cochaperones divided into different families. The colors used for the bars for each CCo family are the same in all

the figures. On the right is a diagram showing the cellular localization of the CCos.

(B) Flow-gram showing the acquisition and analysis of the CCoGI data. CCoGIs were compiled and then GIs and GI profile correlation similarities were obtained.

GIs were filtered at an intermediate threshold (jSGA scorej > 0.08 and p < 0.05), and GI profile correlation similarities were computed. See also Figures S1A–S1D.

(C) Heatmap clustering generated from the GI dataset is shown where the 77 CCos are organized on the x axis as both query and array and 4,583 yeast genes on

the y axis. Below are three examples of GI clusters involving CCos: (i) GI cluster involving Sec63 (see also Figure S1E), (ii) GI cluster of the CCT and the prefoldin

families, and (iii) GI cluster showing predominantly positive GIs between CCT and proteins involved in ribosome biogenesis (see also Figures S2 and S3).

(D) Circos plot (Krzywinski et al., 2009) showing correlations in the GI profiles among CCos. CCo families are grouped and colored according to (A). Profiles were

calculated for all CCo gene pairs andmeasured based on Pearson correlation coefficients (PCCs) from the complete GImatrix. Pairs having a PCC> 0.1 threshold

are plotted. Ribbon width corresponds to the magnitude of the PCC value and the color of the ribbon corresponds to the color of the originating segment.
RESULTS

A Comprehensive High-Fidelity Genetic Interaction
Chaperone and Cochaperone Network
The genome-wide genetic interaction (GI) data to build the chap-

erone and cochaperone (CCo) GI network are described in the

Experimental Procedures, and they were acquired as part of

the effort to map the full GI network in yeast (Costanzo et al.,

2016). For essential genes (Giaever et al., 2002), both Decreased

Abundance by mRNA Perturbation (DAmP) strains (Schuldiner

et al., 2005) as well as temperature-sensitive (TS) alleles were
2736 Cell Reports 20, 2735–2748, September 12, 2017
used (Costanzo et al., 2010, 2016). The initial CCo GI raw data

with 425,751 double mutants were subsequently filtered with a

threshold score cutoff (jSGA scorej > 0.08 and p < 0.05) as

described (Costanzo et al., 2016), and they resulted in

22,443 high-confidence GIs where 13,704 were negative (SGA

score < 0; i.e., double mutants with a more severe fitness defect

than the expected multiplicative effect of combining the individ-

ual mutants, with the extreme case being synthetic lethality) and

8,739 were positive (SGA score > 0; i.e., double mutants with a

less severe defect in fitness than expected) (Table S2; Figure 1B).

The GI data included 62 chaperones and 15 cochaperones with



only 4 missing, namely, Ssa4, Ssc2, Mdj1, and Gim5 (note that

Ssa4, Ssc2, and Gim5 are present in the PPI dataset; see below).

CCo genes had an average of 293 GIs compared to 246 for non-

CCo genes (Figure S1A). Together, the current GI dataset con-

tains three times the number of GIs involving a CCo gene

compared to previous low- and high-throughput studies

compiled from BioGrid (Breitkreutz et al., 2008). Notably, this

comparison shows that our dataset includes almost double the

number of essential genes in yeast compared to previous studies.

To gain insights into the functional ranking of the chaperone

families, we looked at the total number and overlap of GIs among

CCos (Figures S1B–S1D). Hsp70, Hsp40, and Hsp90 chaperone

families tended to have the highest total number and the highest

unique number of GIs (Figures S1B and S1C). Also, the Hsp70

and Hsp40 family members had the highest number of GI inter-

actor overlap with other chaperones (Figure S1D). The Hsp70,

Hsp40, Hsp90, and to a lesser extent CCT members shared

many interactors (Figure S1D).

Figure 1C shows a global view of the positive and negative

CCo GIs encompassing 4,583 yeast genes. CCo genes within

a cluster enriched for a particular molecular pathway were

mostly connected by negative GIs (Figure 1C). For example,

genes encoding for proteins involved in endoplasmic reticulum

(ER) translocation that form a cluster with SEC63, CNE1,

KAR2, and SCJ1 were highly enriched for negative GIs (Fig-

ure 1C, lower panel i). To further verify some of these hits, we per-

formed membrane yeast two-hybrid assays (MYTH) (Snider and

Stagljar, 2016) with Sec63, the essential subunit of the ER trans-

locon containing a J domain, as a bait. Our results showed that

all 6 prey proteins interacting with Sec63 in MYTH (Figure S1E)

had a significant negative GI with SEC63, indicating that a nega-

tive GI with an essential gene is a likely indicator of physical inter-

action. These results further validated the GI data.

Genes that encode for proteins that form part of the same

complex tend to be biased toward a single type of GI (Baryshni-

kova et al., 2010; Costanzo et al., 2016). The type of GI depends

on the essentiality of the genes involved; typically, as mentioned

above, negative GIs were found with essential genes, which was

the case for CCos. For example, the CCT complex, which is

essential for cell viability, displayed mainly negative GIs with

the prefoldin (or GIM) complex (Figure 1C, lower panel ii). This

is consistent with the experimental evidence that CCT and pre-

foldin physically interact and function together to mainly fold

and assemble actin and tubulin in addition to many other sub-

strates (Dekker et al., 2008).

For the essential CCT complex, we observed striking positive

GIs with genes whose proteins are involved in ribosome biogen-

esis (Figure 1C, lower panel iii). This was also observed in stan-

dard liquid growth as shown in Figure S2A. The CCT4-TS strain

grew about 4 times slower at 30�C compared to the wild-type

(WT) strain. In comparison, a TRF5 gene knockout strain (Fig-

ure 1C, lower panel iii) exhibited a slightly slower growth profile

than WT, whereas the double-mutant strain grew better than

CCT4-TS, but not as well as trf5D or WT. TRF5 is part of the

Trf4/Air2/Mtr4 polyadenylation (TRAMP) complex that has a

poly(A) RNA polymerase activity and is involved in post-tran-

scriptional quality control mechanisms (Houseley and Tollervey,

2006). The absence of TRF5 leads to production of misas-
sembled ribosomes (Woolford and Baserga, 2013), which likely

causes a reduction in protein synthesis. This is indeed what we

observed when comparing total protein content of cells at the

same cell density for WT, single-mutant, and double-mutant

strains grown at 30�C to stationary phase (Figure S2B). The total

protein content was lowest for trf5D than for trf5DCCT4-TS dou-

ble-mutant strain, whileWT andCCT4-TS had similar higher total

protein (Figure S2C). Notably, the presence of insoluble proteins

was reduced in the double-mutant strain compared to CCT4-TS

or trf5D single-mutant strains (Figure S2D). Hence, we interpret

the presence of positive GI between the CCT complex and ribo-

some biogenesis genes as resulting from the fact that a CCT-TS

strain exhibits accumulation of toxic misfolded proteins, which is

mitigated by reducing the total number of proteins in the cell

through the reduction of ribosome biogenesis.

CCos Are Highly Biased in Positive GIs with Essential
Genes
Given the observations made with CCT, GIs of CCos against the

essential (i.e., TS or DAmP allele strains) and nonessential genes

were further evaluated. CCos were enriched in positive GIs

against the essential array when compared to the rest of the

tested genes (Figure S2E; p < 0.05). The positive:negative ratio

against the essential array was also found to be significantly

higher for CCos (Figure S2F; p < 0.05). This suggests that,

despite CCos having a larger number of negative GIs in the

network, they are more biased toward positive GIs with essential

genes compared to other genes in yeast.

By performing gene ontology (GO) bioprocess enrichment

analysis of the essential genes interacting with CCos with a

log2 positive:negative GI ratio above zero, significant cellular

processes involved in these interactions were identified (Fig-

ure S3; p < 0.05). Of the 22 CCos, 17 were found to be interacting

with genes that were significantly enriched in distinct bio-

processes (Figure S3). Some CCos displayed enrichments for

positive GIs with diverse bioprocesses, as observed for CCTs

and prefoldins. Other CCos had positive GIs with essential genes

belonging to one or more bioprocesses, such as SSC1with tran-

scription and chromatin organization and SWA2 with proteaso-

mal genes (discussed further below).

The CCo GI Profile Correlation Similarity Network
The GI profile of a given gene is composed of a set of positive

and negative GIs with other genes in the genome. Genes whose

GI profiles correlate tend to be part of the same complex or

function in similar pathways (Costanzo et al., 2016). This prop-

erty was used to look at the connectivity between CCos by build-

ing a GI profile correlation similarity network (Figure 1D; Table

S3). The network highlights the inherent functional organization

within and between the CCo families. Highly connected CCo

families form part of discernible biological processes, such as

the CCTs with the prefoldins or the Hsp40s with the Hsp70s (Fig-

ure 1D). We also found that the gene for the constitutive Hsp90

chaperone, HSC82, connects primarily with STI1 (known as

Hop in mammalian cells), consistent with the fact that Sti1 is

one of the main Hsp90 cofactors (Li et al., 2012). Interestingly,

HSC82 also connects with YDJ1, the main cytoplasmic Hsp40

(Figure 1D). Indeed, there are 24 genes that overlap between
Cell Reports 20, 2735–2748, September 12, 2017 2737
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(A) The GI profile correlation similarity network, left

panel, was constructed using PCCs of GI profile

similarities (edges) for all CCo genes pairs (nodes).

CCos are color coded as in Figure 1A. CCo gene

pairs with profile similarity PCC > 0.1 were con-

nected and plotted using a spring-embedded

layout algorithm in Cytoscape. Genes that have a

similar GI profile are close to each other, and

genes with less similar GI profiles are positioned

farther apart. Subsequently, genes were anno-

tated using the SAFE program (Baryshnikova,

2016), right panel, identifying network regions en-

riched for similar GO bioprocess terms.

(B–G) Regions of the CCo similarity network

significantly enriched for genes with similar GI

profiles are shown forCCT (B),GIM (C), SEC63 (D),

YDJ1 (E), SSB2 (F), and HSP104 (G).

See also Figure S4.
the Hsp90/Hsp90 cochaperones and Ydj1 in the GI profile corre-

lation similarity network. This suggests that Ydj1 might be

involved in the proper regulation of diverse Hsp90 clients rather

than interacting promiscuously.

The GI Profile Correlation Similarity Network Provides
New Insights into CCo Functions
We built a GI profile correlation similarity network composed of

CCo-CCo and CCo-non-CCo correlation pairs evaluated using

a Pearson correlation coefficient (PCC) threshold >0.1, yielding

a total of 10,443 pairs (Table S3). The spatial analysis of func-

tional enrichment (SAFE) program (Baryshnikova, 2016) was

used to functionally annotate regions enriched for particular

GO cellular bioprocesses (Figure 2A). SAFE highlights regions

that are densely connected with a particular attribute, and, in

this case, the network was evaluated with 4,373 biological pro-

cess terms from GO (Ashburner et al., 2000). The CCo network

contained 402 significantly enrichedGO terms grouped into 7 re-

gions involving 726 genes (Figure 2A).
2738 Cell Reports 20, 2735–2748, September 12, 2017
The network provides insights into the

functional specialization of the CCos. In

general, CCos were found to have broad

specificity and to interact with a large

variety of substrates. Hence, many corre-

lated interactors tended to belong to mul-

tiple cellular processes, and they showed

no significant enrichment in any specific

bioprocesses in the network. However,

both the CCT and prefoldin chaperones

exhibited significant specialization in their

functions (Figures 2B and 2C). Many of

their interactors in the CCo GI profile cor-

relation similarity network were involved

in cell polarity, morphogenesis, mitosis,

chromosome segregation, glycosylation,

protein folding, and cell wall biogenesis

(Figures 2B and 2C). This specialization
might be due to the fact that CCT and prefoldins mainly func-

tion to fold and assemble actin and tubulin (Leroux and Hartl,

2000). Most other chaperones displayed either weak or no

specialization (Figures 2D–2G; Figure S4).

The Hsp90 Network
The enrichment landscape of genes correlated with Hsp90 and

its cofactors, including the R2TP (consisting of Rvb1, Rvb2,

Tah1, and Pih1) complex (Kakihara and Houry, 2012), is shown

in Figure 3A. Most of the Hsp90 CCos were dispersed

throughout the GI profile correlation similarity network, and

they typically fell outside the functionally enriched regions,

except for CPR7, CNS1, PIH1, PPT1, and RVB2 (Figure 3A).

To gain further insight into the Hsp90 family interactors, in

Figure 3B we show the GI profile correlation similarity network

consisting of a total of 1,303 genes interacting with Hsp90

and its cofactors. GO annotations for each interacting gene ob-

tained from the enriched regions in Figure 3A were manually

curated to a more specific biological term. The order of Hsp90
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Figure 3. The Hsp90 Family and R2TP Networks

(A) SAFE analysis of the Hsp90 and R2TP on the CCo GI profile correlation similarity network is shown with the annotated bioprocess regions obtained from

Figure 2A. The Hsp90 family and R2TP members are overlaid.

(B) Shown are the GI profile correlation similarities (PCC > 0.1) of interactors for Hsp90 CCos and R2TP genes grouped according to manually curated bio-

processes from (A). Ontology terms were manually curated to reflect a more specific term. Edges are color coded based on the interactor’s respective bio-

process. The sizes of the nodes of Hsp90, Hsp90 cofactors, and R2TP genes reflect the number of interactors. All CCo nodes are color coded as in Figure 1A.
cochaperones based on the number of interactors from most to

least is as follows: CDC37 (291 interactors), CNS1 (250), CPR7

(223), RVB2 (172), PIH1 (131), HCH1 (106), CPR6 (83), AHA1

(67), RVB1 (66), TAH1 (61), STI1 (36), PPT1 (20), and SBA1 (19)

(Figure 3B).

The R2TP complex was initially discovered by our group as an

Hsp90-interacting protein complex in yeast (Zhao et al., 2005),

and it was found to be required for the assembly of other critical

complexes (Nano and Houry, 2013). Rvb1 and Rvb2 are highly

conserved AAA+ ATPases in eukaryotes and are essential for

cell viability. Despite advances in characterizing the R2TP com-

plex, there is no clear understanding of its cellular functions. We

found that members of R2TP have GI profile correlation similar-

ities with genes involved in several bioprocesses (Figure 3B), but
especially between RVB2 and genes encoding for cell polarity/

morphogenesis and mitosis/chromosome segregation/DNA

replication and repair (50% of its interacting genes) and between

PIH1 and ribosomal-related processes (44% of its interacting

genes).

A High-Fidelity Physical Interaction CCo Network
To generate a network based on physical and GI data, proteins

physically interacting with CCos were identified by collecting

PPI pairs from several large-scale PPI screens, including ours

(Gong et al., 2009), for all the CCos listed in Table S1. These

studies comprised PPI data obtained by tandem-affinity purifica-

tion (TAP) followed by mass spectrometry using large-scale

approaches to characterize soluble multiprotein complexes
Cell Reports 20, 2735–2748, September 12, 2017 2739
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Figure 4. Building the CCo Physical Interaction Network
Schematic representation of the construction of the PPI CCo network. The first step is the compilation of CCo-containing interaction pairs (CCo-to-non-CCo or

CCo-to-CCo interactions) from major studies shown as a Venn diagram. The total number of interaction pairs from each study is given in parentheses. The

compiled PPIs were then scored and filtered using the indicated threshold as described in the Experimental Procedures (see also Figures S5D and S5E), resulting

in 8,518 PPIs. Subsequently, Markov clustering was applied to define multiprotein complexes. The final PPI network is shown using the spring-embedded al-

gorithm from Cytoscape. A zoom-in of the CCo supercomplex, the NAJ CCo complex, is shown with the size of each node corresponding to the degree of

connectivity. All CCo nodes in the network are colored according to Figure 1A and non-CCo proteins are in gray.
(Gavin et al., 2002; Krogan et al., 2006), membrane protein inter-

actors (Babu et al., 2012), and chaperone interactors in yeast

(Gong et al., 2009), totaling 43,020 interactions (Figure 4).

The overlap between the complete GI (positive plus negative)

dataset and the PPI dataset was significant (p = 2.2 3 10�16;

Fisher’s exact test), and this corresponded to about 5% of the

PPIs and 9%of theGIs (positive plus negative). The highest num-

ber of interaction overlap between the 43,020 CCo PPIs and the

CCo GIs was with negative GIs, followed by the GI profile corre-

lation similarity network, and lastly positive GIs with 1,236, 795,

and 774 common interactions, respectively (Figures S5A–S5C).

We found that the CCos with the highest number of common in-

teractions included theHsp70s (Sse1/2, Ssb1/2, Ssz1, andKar2),

Hsp40s (Ydj1 and Swa2), and the Hsp90 (Hsc82) (Figures S5A–
2740 Cell Reports 20, 2735–2748, September 12, 2017
S5C). Furthermore, in characterizing the physicochemical prop-

erties of CCo interactors, we found that the molecular weight

and protein abundance of interactors in the PPI dataset were

significantly greater compared to those of the GI datasets (p =

1.2 3 10�10 and 1.9 3 10�11, respectively; Mann-Whitney-Wil-

coxon test). This was likely due to a higher number of larger

(>70 kDa) abundant proteins in the cell interacting with CCos.

All other properties were similar across different datasets.

To select high-fidelity PPI interactions, several scoring

methods were evaluated. The goal was to obtain the largest

number of CCo-containing interaction pairs while maintaining

approximately equivalent precision (selected as R70%) against

a reference set of PPIs derived from the CYC2014 catalog of

manually curated protein complexes (Pu et al., 2009). We found
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Figure 5. Overlay of the GI Profile Correlation Similarities onto MCL Clusters from PPIs

Shown is a nested network of the GI profile correlation similarities between CCo- (light blue) and non-CCo- (light gray) containing MCL clusters (complexes)

described in Table S5. Positive and negative correlations are shown between complexes and only positive correlations are shown within complexes. CCos

present in each complex are indicated in the bottom-right inset. Six complexes are shown in detail. The size of each node within the complexes corresponds to

the number of interactors. For simplicity, complexes containing only two proteins are not shown.
Hart scoring (Hart et al., 2007) a better predictor of CCo interac-

tions (Figures S5D and S5E). Using a Hart score threshold of 6,

we obtained a finalized network containing 8,518 non-redundant

pairwise associations (i.e., CCo-to-non-CCo, CCo-to-CCo, or

non-CCo-to-non-CCo) (Table S4). Among these, we identified

328 associations involving a CCo with 56 of the 82 CCos

captured (Figure 4; Figures S5D and S5E; Table S4). Markov

clustering (MCL) (Enright et al., 2002) was then employed to

organize the physical network. This resulted in a total of 370

complexes with 15 of them containing a CCo (Figure 4; Figures

S5F–S5K; Table S5). Strikingly, most CCos were found to cluster

together in a specific region of the proteome, specifically

the families of Hsp90, Hsp70, Hsp40, AAA+, CCT, and sHsp

(Figure 4; discussed further below). Such connectivity among

six different CCo families has not been reported before. It should

be emphasized that the MCL complexes obtained represent
functional clusters and not necessarily tightly associating phys-

ical complexes.

A Combined Physical and Genetic CCo Network
Genes encoding physically interacting or co-complexed proteins

tend to share many GIs in common. By overlaying interactions

based on CCo GI profile correlation similarities onto the pre-

dicted protein MCL complexes obtained from the PPI network,

we built a combined network highlighting CCo complexes (Fig-

ure 5). The complexes are connected based on the average in-

ter-complex GI profile correlation similarities between the genes

in each complex pair. Together, this allows the quantitative and

nested representation of the GI profile correlation similarities be-

tween and within the predicted MCL complexes.

The network shown in Figure 5 displays 10 CCo-containing

complexes with a direct connection to 86 non-CCo-containing
Cell Reports 20, 2735–2748, September 12, 2017 2741



complexes. The Sec63-, Cdc37-kinase-ATP synthase-, R2TP-,

Swa2-proteasome cap-, Gim1-6-, and Hsp90-Hsp70-Hsp40-

AAA+-CCT-sHsp-containing complexes are highlighted in the

figure. We named the Hsp90-Hsp70-Hsp40-AAA+-CCT-sHsp

complex as the naturally joined (NAJ) CCo complex. The pres-

ence of such a chaperone supercomplex clearly suggests a

high degree of interactor overlap and functional coordination or

redundancy among these critical chaperones. The NAJ complex

also highlights the tight cross-talk among the protein homeosta-

sis machinery.

Additionally, we found that complexes that are functionally

specialized tend to have more connectivity in this network than

those that have a broader function (Figure 5). Such is the case

when comparing the Sec63-containing complex with 47 connec-

tions or the Gim1-6-containing complex with 29 connections

against the NAJ and the Cdc37-containing complexes with just

one and two connections, respectively (Figure 5). As expected,

the Sec63-containing complex is well connected with com-

plexes involving various ER processes aswell as with the protea-

some core subunit-containing complex, which likely highlights

the ER-associated degradation pathway. The Gim complex

shows functional specialization by connecting with proteins

involved in the cytoskeleton and transcriptional regulatory pro-

cesses. On the other hand, the Cdc37-containing complex inter-

actions are less specialized, involving diverse functions ranging

from several kinases both at the inter- and intra-complex level,

DNA repair proteins, and interactions with several mitochondrial

complexes such as the ATP synthase (Figure 5). The NAJ com-

plex has a single edge connecting it with actin assembly and

motility. Given that this is a multi-CCo complex with a very broad

involvement in numerous cellular pathways, this connection re-

flects the most common pathway between the NAJ CCo com-

plex and the rest of the proteins.

As shown in Figure S3, the Hsp40 protein Swa2 was found to

have a very strong enrichment for positive GIs with proteasomal

genes. We also see such a strong association between Swa2

and the proteasome cap in Figure 5.SWA2 interacts with 13 sub-

units of the proteasome (RPN1,5-7,10-13 and RPT1-4,6) and the

two proteasome assembly chaperones NAS6 and ECM29. As

well, this complex interacts with the proteasome core particle

complex. Swa2 is a multifunctional protein involved in uncoating

of clathrin-coated vesicles and in interacting with ubiquitin

chains. Together, this suggests that Swa2 may assist in the as-

sembly or regulation of the proteasome. The interaction between

Swa2 and the proteasome has not been reported before in the

literature.

The R2TP complex clusters with members of the histone

exchange complex Swr1, histone acetyltransferase complex

NuA4, and members of the chromatin remodeling complex

Ino80. We also found that the only gene interacting with all three

RVB1, RVB2, and PIH1 is the histone exchange ATPase SWR1

(Figure 5). Importantly, actin is a major interactor of this complex

through the Rvbs by both GI profile correlation similarity and

physical interactions.

The combined network in Figure 5 clearly illustrates the

different degrees of specialization of CCos. On one end, we

find that the Sec63- and Gim-containing complexes have the

highest connections followed by the Swa2-proteasome cap-
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containing complex, and, on the other end, we find the NAJ com-

plex with minimal connectivity.

Rvb1/2 Form Condensates in Stressed Cells
To test the predictive value of our interaction data and given the

role of chaperones in preventing protein aggregation and pro-

moting protein folding, we examined CCos that colocalize with

foci-forming proteins on the CCo GI profile correlation similarity

network (Figure S6). We compiled a list of 547 proteins that have

previously been shown either by low- or high-throughput studies

to form foci (or condensates) under heat shock or nutrient limita-

tion (Table S6) (Bolognesi et al., 2016; Narayanaswamy et al.,

2009; O’Connell et al., 2014; Shah et al., 2014; Wallace et al.,

2015).

As shown in Figure S6A, these foci-forming genes are en-

riched (p < 0.05) in regions containing many CCo families, such

as the AAA+, CCTs, prefoldins, small heat shock, Hsp40s, and

notably the Hsp90-R2TP system among others. By extracting

the subset of foci-forming proteins that interact with the

Hsp90-R2TP system, we found that these are highly enriched

in genes involved in ribosome biogenesis and translational pro-

cesses (Figure S6B). Furthermore, these interactions are largely

driven by the CDC37, CNS1, and CPR7 cochaperones and

RVB1, RVB2, and PIH1 components of the R2TP complex (Fig-

ure S6C). Hsp82, Hsc82, and some of the Hsp90 cochaperones

have been previously reported to form foci (Figure S6C; Table

S6). Hence, we investigated whether subunits of the R2TP com-

plex also form foci. No foci formation was observed for Tah1 or

Pih1, but we found Rvb1/2 to form condensates under nutrient

limitation conditions.

Initially, we investigated growth at 30�C in nutrient-rich condi-

tions (YPD). Rvb levels were constant as a function of cell growth

(Figure S7A) and cell cycle (Figure S7B), with Rvb1 levels being

higher than Rvb2.We then generated a strain, WH12, expressing

endogenously tagged RVB1-mRFP and RVB2-GFP (see the

Experimental Procedures) tomonitor Rvb1 andRvb2 localization

throughout the cell cycle. Rvb1 andRvb2 predominantly colocal-

ized to the nucleus (Figure S7C) with a nuclear-to-cytoplasmic

protein (N/C) ratio around 3 to 4 (Figure S7D). Hence, neither

protein expression nor protein localization was significantly

changed under the conditions tested.

Next, the effect of different stresses on Rvb localization was

examined (Figure 6A). Under these stress conditions, Rvb1 and

Rvb2 protein levels did not significantly change, and the two pro-

teins remained predominantly colocalized with an N/C ratio of 3

to 4 (Figure S7E, left panel), similar to that of the N/C ratio in log

phase cells (Figure S7D), with a colocalization Pearson correla-

tion coefficient of 0.81 (Figure S7E, right panel). Cells treated

with water for 1 hr were very heterogeneous, exhibiting various

morphologies with some undergoing apoptosis, and, thus, these

cells were not quantified for N/C ratios.

In carrying out the localization studies, we noticed that a pro-

portion of Rvb1 and Rvb2 forms condensates near the nucleus

under some of the stress conditions tested (indicated by white

arrows in Figure 6A), namely, stationary phase (STAT), growth

in media lacking glucose (�Glc), treatment with 2-deoxy-D-

glucose (DG), and growth in water. It should be noted that

Rvb1 has been reported to form aggregates in cells exposed
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Figure 6. Condensate Formation by Rvb1/2

(A) Colocalization of Rvb1 and Rvb2 under various stress conditions. Cells of the WH12 strain were grown to log phase and then treated with various stress

conditions as follows: mock treatment, 10% ethanol (EtOH), 900 mM NaCl (NaCl), heat shock at 37�C (37�C), stationary phase (STAT), minus glucose media

(�Glc), 1 mM 2-deoxy-D-glucose (DG), minus nitrogen media (�N), 0.01% methyl methanosulfonate (MMS), 10 ng/mL rapamycin (Rap), and growth in water

(H2O). White arrowheads in STAT, �Glc, DG, and water treatment point to the Rvb condensates.

(B) Condensate formation by Rvb1 and Rvb2 upon glucose deprivation. Rvb1 and Rvb2 in WH12 strain after treatment with DG for 1 hr exhibit condensates near

the nucleus. White arrow points to a condensate.

(C) Rvb1-FLAG in YK26 (RVB1-FLAG) strain treated with DG (upper panels) or mock treated (lower panels) was labeled with anti-FLAG primary antibodies and

AlexaFluor488 secondary antibodies.

(legend continued on next page)
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to a high temperature of 46�C (Wallace et al., 2015), which was

not a condition tested in our study.

Because the Rvb1 and Rvb2 condensates observed here ap-

peared to be specific to glucose deprivation, we examined them

in more detail (Figures 6B–6D; Movie S1). Figure S7F provides a

statistical summary of the distribution of condensates in cells in

stationary phase, �Glc, and DG conditions. Nearly 50% of all

cells in each stress condition harbored condensates, of which

most of the cells had one condensate per cell. Only 31% of cells

contained condensates in the �Glc treatment, possibly due to

the presence of other metabolizable nutrients in the rich media.

Treatment with DG for 2 hr resulted in an increase in the number

of cells harboring three condensates per cell.

We observed that condensate formation occurred for both

Rvb1 and Rvb2 and that these condensates appeared in the

cytoplasm, close to the nucleus (Figures 6A–6D). Figure 6B

shows a closer view of Rvb1 and Rvb2 colocalized at the nucleus

and in the perinuclear condensates (RFP/GFP panel). To ensure

that condensate formation is not an artifact of GFP tagging, we

performed indirect immunofluorescence labeling on the YK26

strain, expressing endogenous Rvb1-FLAG, in the presence of

DG or mock treated (Figure 6C). Immunofluorescence labeling

showed that Rvb1-FLAG also formed condensates close to the

nucleus, indicating that condensate formation is not an artifact

of endogenous GFP tagging.

We then explicitly determined that Rvb condensates resided in

the cytoplasm using the WH4 strain. The strain expresses

endogenous Rvb2-GFP and Nup49-mCherry, which is a compo-

nent of the nuclear pore complex and can be used as a marker

for the nuclear membrane. WH4 strain was treated with DG for

1 hr and subsequently imaged. Rvb condensates appeared on

the cytoplasmic side of the nuclear membrane and localized

very close to the nucleus (Figure 6D, left panel). However, treat-

ment with DG did not affect Nup49-mCherry localization, and the

distance of the condensate relative to the nuclear membrane did

not change at 30 min, 1 hr, or 2 hr of DG treatment. Most of the

condensates were 0.5 mmor less from the nuclear envelope (Fig-

ure 6D, right panel), and their formation depended on nuclear

export by Crm1 (Figure S7G). Condensate formation was rapid

and occurred within 3 min after DG addition (Figure 6E; Movie

S1). These condensates were also rapidly reversible (within

10 min) upon the addition of glucose (Figure 6F; Figure S7H).

The rapid nature of assembly and dissolution suggests that

these condensates are not aggregates but biomolecular con-

densates (Rabouille and Alberti, 2017). We named these con-

densates Rvb bodies instantly triggered by starvation (Rbits).

Rbits did not colocalize with stress granules using Pbp1-GFP

as a marker (Figure S7I) nor with P-bodies using Dhh1-mRFP as

a marker (Figure S7J). Rbits also did not colocalize with protein
(D) WH4 strain (RVB2-GFP and NUP49-mCHERRY) was grown to log phase and

membrane (upper panels) in comparison to mock treatment (lower panels) whe

distance of the condensates from the nuclear membrane of 1,410 condensates in

relative to total condensates measured.

(E) Percentage of cells of WH12 strain forming Rbits after the addition of DG (see

(F) Average percentages of cells with Rbits are represented in a bar graph obtaine

bars represent one SD.

See also Figures S6 and S7.
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aggregates marked by Von Hippel-Lindau factor (VHL) (Fig-

ure S7K). We also tested whether protein components in com-

plexes containing Rvb1 and Rvb2 formed condensates that

might be similar to Rbits under glucose deprivation conditions.

The following proteins were assessed for condensate formation:

Pih1, Nop58, and Bcd1, all of which are involved in box C/D small

nucleolar ribonucleoprotein (snoRNP) assembly; Ino80, Taf14,

and Nhp10, components of the Ino80 chromatin-remodeling

complex; Vps71, component of the Swr1 chromatin-remodeling

complex; Tti1, part of the ASTRA chromatin-remodeling com-

plex and of the TTT complex; and Rpb1, Rpb2, Rpb3, Rpb7,

Rpb8, and Rpb9 subunits of the RNA polymerase II machinery.

None of these components appeared to form condensates

resembling the Rbits under our tested conditions. Together

these data suggest that Rvb1/2 form stress-inducible conden-

sates independently of other proteins and stress-inducible

compartments.

Condensate Formation by Rvb1/2 In Vitro Depends on
pH, ATP Levels, and Crowding
To further investigate the properties of Rbits, we sought to

reconstitute these condensates in vitro. Rvb1/2 complex was

purified from E. coli and the proteins were labeled with a fluoro-

phore. Yeast cells respond in many ways to stress: trehalose

production is increased (Wiemken, 1990), ATP concentration

drops (Weitzel et al., 1987), there is increased crowding (Mour~ao

et al., 2014), and there is a drop in pH (Weitzel et al., 1987). Based

on these observations, we tested how these parameters influ-

ence Rvb1/2 in vitro. Purified Rvb1/2 complex was diffuse in so-

lution under neutral pH conditions (Figures 7A and 7B). However,

at pH 6.0, Rvb1/2 formed round condensates of a size of about

0.1–0.3 mm. Rvb1/2 also formed condensates upon the addition

of polyethylene glycol (PEG) of two different lengths to mimic a

crowded cellular environment (Figures 7A and 7B).We quantified

the amount of condensed material by comparing the fluores-

cence intensity of the condensates with the fluorescence inten-

sity outside of the condensates. We found that condensate

formation increased when using a longer PEG chain in compar-

ison to a shorter one (Figures 7A and 7B).

It has been reported that some proteins are able to form liquid,

viscoelastic, or solid compartments upon crowding (Patel et al.,

2015). To probe the material properties of the Rbits, we applied

fluorescence recovery after photobleaching (FRAP). When Rbits

were photobleached, there was no significant fluorescence re-

covery in vitro (Figures 7C and 7D) or in vivo (using the WH12

strain described above; Figures 7E and 7F), suggesting that

these condensates are solid.

We then analyzed whether the condensates dissolved when

the triggering condition was reversed. For the pH-induced
treated with DG for 1 hr. Rvb2-GFP forms condensates outside the nuclear

re no condensates are observed. Right panel shows the quantification of the

800 cells treated with DG for 30min, presented as a percentage of condensates

also Movie S1).

d from images shown in Figure S7H. Experiments were repeated 3 times. Error
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Figure 7. Characterization of Rbits

(A) Condensation of purified Rvb1/2 complex was monitored at different pHs or in 10% PEG of different lengths.

(B) Condensate formation was quantified by plotting the fluorescence intensity inside against the intensity outside the condensates.

(C) The material turnover of a Rvb1/2 condensate was analyzed by FRAP.

(D) Quantification of the FRAP results for a bleached (blue) and a non-bleached condensate (green).

(E) The material turnover of Rbits formed in energy-depleted yeast cells was analyzed by FRAP.

(legend continued on next page)

Cell Reports 20, 2735–2748, September 12, 2017 2745



condensates of purified Rvb1/2, pHwas increased back from 6.0

to 7.5, and this caused the condensates to dissolve (Figures 7G

and 7H). Similarly, reducing crowding of PEG-induced particles

by dialysis resulted in the dissolution of the Rbits (Figures 7I

and 7J). In agreement with a recent report that ATP dissolves

condensates (Patel et al., 2017), the presence of ATP or ADP

at 10 mM prevented condensate formation at low pH (Figures

7K and 7L). A titration experiment revealed that ADP was less

potent than ATP in preventing condensate formation of Rvb1/2

(Figure 7M). Trehalose, which is strongly upregulated in

response to stress, did not prevent condensate formation even

at high concentrations (Figures 7K and 7L).

These results suggest that, in response to energy depletion

(i.e., a drop in ATP concentration), a drop in pH and an increase

in crowding could trigger Rvb1/2 condensate formation in cells.

This in turn would indicate that a drop in the cytosolic pH alone,

independent of a metabolic response, should not induce

condensate formation. To test this, we used 2,4-dinitrophenol

(DNP), a protonophore, which can be used to equilibrate the

pH inside the cells with that outside (Munder et al., 2016). Using

this approach on the WH12 yeast cells, we indeed found that

Rbits did not form at pH 6 (Figure 7N) without energy depletion.

This indicates that cytosolic acidification alone is not sufficient to

trigger condensation but rather multiple triggers must coincide

to promote Rbits formation.

DISCUSSION

In this work, we have provided a comprehensive global survey

of the protein homeostasis network of the yeast cell using

genetic and physical interaction data. This analysis offered an

overview of chaperone connectivity that is consistent with the

extensive biochemical data available from the literature (Fig-

ure 1D); it also allowed us to identify novel features of chaperone

function.

The bias of many chaperones toward positive GIs with essen-

tial genes in comparison with the rest of the genes in yeast

(Figures S2E and S2F) suggests an unexpected finding of chap-

erones preventing or reducing cell viability if an essential gene of

the cell is affected. It is possible that this feature of chaperone

function may underlie a novel mechanism by which chaperones

maintain protein homeostasis in the cell. While counterintuitive,

we propose that chaperones maintain protein homeostasis if

nonessential genes are damaged but reduce cell viability if

essential genes are affected. This observation might have direct

implications for protein evolution.
(F) Quantification of the FRAP results for a bleached (red) and a non-bleached R

(G) pH-induced Rvb1/2 condensates could be dissolved by re-adjusting to neutr

(H) Quantification of the data in (G).

(I) PEG-induced Rvb1/2 condensates could be dissolved by dialysis against buff

(J) Quantification of the data in (I).

(K) Effect of the pre-addition of ATP, ADP, or trehalose on Rvb1/2 condensation

(L) Quantification of the data in (K).

(M) Titration of ATP and ADP reveals the critical concentrations needed for the inh

same as the representative panel labeled as w/o in (K).

(N) Rbits formation in DNP-treated yeast was monitored by adding energy deple

Distributions and errors shown in the plots of (B), (H), (J), (L), and (M) are derived
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Our interaction network provided a clear distinction between

chaperones that act on multiple substrates and impact many

pathways versus those that have a more defined role in the cell

(Figure 2; Figure S4). Most CCos are found to be proteins with

multiple functions (pleiotropic) with only a few members being

more specialized. In this regard, it was very striking to find that

CCT and the prefoldin complex are rather specific chaperones

and act on particular cellular pathways related to cell polarity

and mitosis (Figures 2B and 2C). This specificity likely arises

because such chaperones act predominantly on a select set of

substrates, such as actin and tubulin, rather than on a multitude

of proteins. Hence, these chaperones have been optimized

through evolution to become critical players in specific cellular

pathways.

The procedure we used to obtain a high-fidelity physical inter-

action dataset (Figure 4) revealed the presence of a huge chap-

erone supercomplex that we named the NAJ complex (Figures 4

and 5). This complex reveals that chaperones are physically

and/or functionally linked in the cell. Chaperones are always in

communication with each other even when present in different

cellular compartments. The presence of such a supercomplex

is likely essential for maintaining cellular protein homeostasis

across different organelles.

Another intriguing finding, highlighting the predictive value of

our network, is the observation that many proteins that have

been reported to form condensates under different growth con-

ditions are also interactors of many CCos. Subsequently, we

confirmed that Rvb1 and Rvb2 form perinuclear condensates,

which we named Rbits, in response to nutrient deprivation (Fig-

ures 6 and 7; Figure S7). Although the physiological role of Rbits

is currently not clear, they could possibly act as protective stor-

age depots for the Rvb1/2 proteins in response to nutrient stress.

In conclusion, our comprehensive analysis suggests that a

global integrative network approach with physical and GI data

is necessary to obtain a more thorough functional overview of

such versatile and modular proteins as the chaperones and their

cochaperones. This study reveals new findings on chaperone

functions, and it serves as a resource for gaining a better under-

standing of the mechanisms that govern protein homeostasis in

the cell.

EXPERIMENTAL PROCEDURES

Collection and Analysis of CCo GIs

Experimental approaches used to obtain high-throughput GI data for all chap-

erones and cochaperones have recently been described (Costanzo et al.,

2016). GIs were extracted for the following: the nonessential 3 nonessential
bits (green).

al pH.

er containing no PEG.

.

ibition of condensate formation. Note that the left panel was chosen to be the

tion medium or phosphate buffer at varying pHs to the cells.

from three images of three biological replicates.



(NxN); essential3 nonessential (ExN); essential3 essential (ExE);DAmP data-

sets for Cct8, Cns1, Cwc23, Jac1, Sis1, and Ssz1; and the Hsp90-TS dataset

(Zhao et al., 2005). An intermediate threshold (p < 0.05 and jSGA scorej > 0.08)

was applied to the dataset. GI profile correlation similarities were obtained by

computing PCC between all chaperone query-query and query-array pairs of

strains in the nonessential, essential, DAmP, and TS GI datasets.

Analysis of Positive and Negative GI Ratios from CCos

To calculate positive GI enrichments, positive or negative GI densities of

CCos against the essential (E) and nonessential (N) arrays were computed

as follows:

Positive GI densityðE or NÞ=
positive density of gene XðE or NÞ

Average positive density for all query genesðE or NÞ

The enrichment ratio of positive-to-negativeGI in each dataset (i.e., E or N) was

calculated as follows:

Positive : NegativeðE or NÞ= Positive GI densityðE or NÞ
Negative GI density ðE or NÞ

Positive GI bias was calculated as follows:

Positive GI biasðE or NÞ= Positive : Negative for E

Positive : Negative for N
:

GI density was calculated by selecting a single allele per array gene. The

result was averaged across 100 different randomizations. GI densities of

different query strains with mutations on the same gene were averaged to

obtain a single value per query gene. GI data for pairs of genes belonging

to the same protein complex, obtained by merging Table S1 and a recent

list of protein complexes (Costanzo et al., 2016), were removed for this

analysis.

Construction of the Yeast Chaperone PPI Network

We constructed the yeast chaperone PPI network by compiling four protein

interaction datasets (Gavin et al., 2002; Krogan et al., 2006; Babu et al.,

2012; ChaperoneDB fromGong et al., 2009). To obtain the high-fidelity network

of PPI interactions given in Table S4, themass spectrometry (MS) datasets that

included MALDI Z scores or liquid chromatography-tandem mass spectrom-

etry (LC-MS/MS) confidence values were pre-filtered at a MALDI Z score

threshold R1 and/or an LC-MS/MS confidence score R70%. Next, an inte-

grated interaction score was computed by summing the hypergeometric (HG)

interaction scores (Hart et al., 2007) as Gavin_HG + Babu_HG3 0.5 + Krogan_

HG 3 0.5 + Gong_HG 3 0.08. The final network was derived by applying an

integrated score of 6, selected to maximize chaperone interaction coverage

while maintaining a precision R70% against the CYC2014-derived reference

set (Figures S5D and S5E). The resulting integrated PPI network comprises

8,518 interactions between 2,062 proteins (Figure 4; Table S4). From these

interactions, 328 involved at least one CCo capturing a total of 56 of the 82

CCos used in this study.

We compiled a gold standard reference set of chaperone complexes by

using the CYC2014 catalog (Pu et al., 2009) containing 443 manually

curated non-redundant yeast protein complexes. Using chaperone preci-

sion and number of chaperones as a proxy, a Hart score of 6 was chosen

as threshold (Figure 4; Figures S5D and S5E). Next, given that the densely

connected regions of the PPI dataset suggest associated protein units

likely having a similar function (Wodak et al., 2009), we used the MCL

method (Enright et al., 2002) to identify these regions from within the CCo

interaction network. High-confidence 8,518 PPIs were clustered over a

range of Inflation (I) parameters (1.0 to 5.2). Cluster results were bench-

marked based on overall cluster properties, for example, on number of

clusters and average cluster size (Figures S5F and S5G), CYC2014 (Pu

et al., 2009), complex coverage through precision and homogeneity metric

(Pu et al., 2007) (Figures S5H and S5I), and intra- and inter-cluster func-

tional diversity as measured by the Shannon index of GO biological process

and molecular function terms (Figure S5J). Based on the minimization

of intra-cluster average functional diversity and coverage of known
CYC2014 complex members, an inflation parameter of 1.8 (Figure S5J)

was chosen to generate the finalized clustering of the filtered interaction

network, corresponding to 327 clusters possessing 2 or more proteins (Fig-

ure S5K; Table S5).

Construction of the GI Profile Correlation Similarity Network

Overlaid onto Predicted Complexes from PPIs

Genetic profile similarity scores for all CCo GIs were overlaid onto predicted

MCL clusters. Positive and negative GI profile correlation scores were

computed using PCC. In Figure 5, inter-complex edges represent the average

GI profile correlation similarities between the interacting members from each

complex, and the intra-complex edges represent the GI profile correlation sim-

ilarities between genes within each complex. Proteins in the different MCL

complexes are given in Table S5.

Other experimental procedures are provided in the Supplemental Experi-

mental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, six tables, and one movie and can be found with this article

online at http://dx.doi.org/10.1016/j.celrep.2017.08.074.
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