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Abstract

Adaptation to acid stress is an important factor in the transmission of in-
testinal microbes. The enterobacterium Escherichia coli uses a range of phys-
iological, metabolic, and proton-consuming acid resistance mechanisms in
order to survive acid stresses as low as pH 2.0. The physiological adaptations
include membrane modifications and outer membrane porins to reduce pro-
ton influx and periplasmic and cytoplasmic chaperones to manage the effects
of acid damage. The metabolic acid resistance systems couple proton efflux
to energy generation via select components of the electron transport chain,
including cytochrome bo oxidase, NADH dehydrogenase I, NADH dehy-
drogenase II, and succinate dehydrogenase. Under anaerobic conditions the
formate hydrogen lyase complex catalyzes conversion of cytoplasmic pro-
tons to hydrogen gas. Finally, each major proton-consuming acid resistance
system has a pyridoxal-5′-phosphate-dependent amino acid decarboxylase
that catalyzes proton-dependent decarboxylation of a substrate amino acid
to product and CO2, and an inner membrane antiporter that exchanges ex-
ternal substrate for internal product.
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SCFA: short chain
fatty acid

Extreme acid stress:
refers to external pH
conditions within the
range of 2.0 to 3.0
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ESCHERICHIA COLI ACID STRESS RESPONSE

Enteric bacteria are found naturally in the digestive tracts of mammals and include many species
of commensal and pathogenic organisms, which typically grow best under neutral pH conditions.
During passage through the human digestive tract, enteric bacteria must first survive the extremely
acidic stomach, where a pH between 1.5 and 3.0 acts as a potent barrier against microbial infection
(13, 83). Most pathogenic bacteria require a large infectious dose (e.g., Vibrio cholerae requires
∼109 organisms) (33, 54, 64) in order to ensure that some organisms survive passage through
the stomach. Remarkably, infectious enterohemmorhagic Escherichia coli requires a substantially
lower infectious dose (∼102 organisms), and this has been attributed to the robust survival of
this bacteria at low pH (33, 54). Under laboratory conditions, E. coli is capable of surviving a pH
stress of 2.0 for several hours (13, 53, 54), underscoring the potent ability of this organism to
withstand acidic conditions. In addition, some bacteria, such as Helicobacter pylori, are adapted to
grow in the stomach despite the low pH (56). After passage through the stomach, bacteria enter
the relatively neutral or basic small intestine (60). However, the environment of the intestine is
rich in carbohydrates and low in oxygen, leading to high levels of fermentation and the consequent
production of short-chain fatty acids (SCFAs) such as formic, acetic, propionic, and lactic acids
(38, 58, 60). SCFAs cross the cell membrane in an uncharged state and subsequently dissociate in
the cytoplasm, resulting in a lowering of the internal pH. Hence, bacterial cells face acid stress
even in the intestine.

To counteract acid stresses, cells utilize a combination of passive and active acid resistance
(AR) systems. The passive system of acid resistance arises owing to the buffering capacity of
the amino acids, proteins, polyamines, polyphosphate, and inorganic phosphate present in the
cytoplasm that together contribute between 50 and 200 mM buffering capacity per pH unit (77).
The active systems can be divided into physiological, metabolic, and proton-consuming systems.
The regulation and function of bacterial acid stress response systems have been reviewed previously
(27, 50, 77, 94). Here, we initially provide an overview of the physiological and metabolic systems
but then focus mainly on the recent structural insights into the proton-consuming AR systems of
the model enteric bacterium E. coli.

PHYSIOLOGICAL ADAPTATIONS TO ACID STRESS

There are numerous definitions of what constitutes acid stress, but for this review we use the
following terms: Extreme acid stress refers to external pH conditions within the range of 2.0 to 3.0;
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Mild acid stress:
refers to external pH
conditions within the
range of 4.0 to 5.0

OMP: outer
membrane porin

Proton motive force
(PMF): the inner
membrane proton
gradient used to power
ATP generation and
active transport
processes

mild acid stress refers to external pH conditions within the range of 4.0 to 5.0. The first sites of acid
damage in E. coli are the outer membrane and the periplasm, as these are in direct contact with the
external environment. E. coli can reduce the influx of protons by changing the composition of the
membranes to decrease membrane fluidity and thus permeability to protons. This is accomplished
by reducing the concentration of unsaturated lipids (93) and increasing the concentration of
cyclopropane fatty acids through the action of cyclopropane fatty acyl phospholipid synthase (8, 14)
(Figure 1a). Furthermore, proton influx can be reduced by blocking the outer membrane porins
(OMPs) by the binding of polyphosphate or cadaverine to the OMPs (19, 68, 71) (Figure 1b).

The periplasm also has two chaperone proteins, HdeA and HdeB (28), that are transcribed
as part of the GadE-dependent acid fitness island (57, 69). HdeA and HdeB are small α-helical
proteins that are dimeric at neutral pH but dissociate into partially unfolded monomers at low pH
and bind to acid-denatured substrate proteins (28, 48) (Figure 1c). As the pH increases, HdeA
and HdeB slowly release substrate proteins in a refolding-competent conformation (80). This
single binding-and-release cycle is an important adaptation because proteins in the periplasm are
not able to access the ATP-dependent chaperone systems such as the cytoplasmic GroEL/ES or
DnaK/DnaJ/GrpE systems (40).

Although E. coli has numerous cytoplasmic chaperones that operate efficiently during stresses,
such as heat shock, to date only the Hsp31 chaperone (Figure 1d) has been implicated in acid stress
(61). Homodimeric Hsp31 functions as a holdase: It binds to and stabilizes unfolded intermediates
until the stress is relieved and then allows the proteins to refold either spontaneously or through
the ATP-dependent chaperone systems (65). In addition to Hsp31, various low-molecular-weight
proteins have been implicated in cell envelope stress and acid stress; however, the molecular basis
for the action of these proteins is still under investigation (39, 52). Apart from protein chaperones,
the DNA-binding Dps (DNA-binding protein from starved cells) protein contributes to extreme
acid stress survival by binding to and protecting DNA (15) (Figure 1e). Dps oligomerizes to
form a dodecameric cage-like structure with a hollow interior that sequesters Fe2+ ions (34), thus
reducing the formation of damaging hydroxyl free radicals via the Fenton reaction (95).

METABOLIC RESPONSES TO ACID STRESS

Global transcription analysis of E. coli growth during either aerobic or anaerobic conditions under
mild acid stress (pH 5.0–5.7) has revealed metabolic changes that provide protection against low
pH (38, 58, 77). Among these changes are an induction of stress response systems, including the
periplasmic stress response and the oxidative stress response (under aerobic conditions). Inter-
estingly, there is an increase in genes involved in transport and metabolism of secondary carbon
sources. These carbon sources include sugars (ribose, arabinose, fuculose) and sugar derivatives
(galactitol, sorbitol, melibiose, mannitol, gluconate) that produce fewer acids upon metabolism
compared with glucose, which is beneficial to an acid-stressed cell.

During aerobic growth under mild acid stress, there is an upregulation of selected components
of the electron transport chain, including cytochrome bo oxidase (CBO) (cyo genes), NADH
dehydrogenase II (NDH-II) (ndh genes), succinate dehydrogenase (SDH) (sdh genes), and NADH
dehydrogenase I (NDH-I) (nuo genes) (58, 77) (Figure 2). Under normal growth conditions these
systems are involved in generating the proton motive force (PMF) by coupling metabolic redox re-
actions (such as oxidation of NADH to NAD) with the direct or indirect export of protons from the
cell. The heme-copper CBO complex accepts electrons from ubiquinol-8 (a quinone) and catalyzes
the conversion of cytoplasmic protons and molecular oxygen to H2O (1). In the process, the protein
pumps out 2H+ for every electron, leading to the generation of PMF (Figure 2a). The NDH-II
complex is responsible for transferring two electrons from NADH, via an FAD cofactor, to the
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membrane quinone pool (74) (Figure 2b). Similarly, the SDH complex catalyzes the oxidation of
succinate to fumarate and in so doing transfers two electrons to the quinone pool (92) (Figure 2c).
NDH-I is a large, multisubunit complex that contains a cytoplasmic NADH-binding domain
with an FMN cofactor, several iron-sulfur cluster proteins, and a number of transmembrane
proteins (23). NDH-I oxidizes NADH to NAD, transferring two electrons to the quinone pool
and concomitantly pumping out four protons, thus contributing to the PMF (73) (Figure 2d).

Because these systems are upregulated during aerobic growth under mild acid stress, a higher
rate of proton export is expected under these conditions than under growth conditions at neutral
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Figure 2
Metabolic responses to acid stress. Schematic illustration of the members of the oxidative electron transport chain that are implicated in
proton efflux during mild acid stress under aerobic growth conditions (38, 58). (a) The cytochrome bo oxidase (CBO) complex reduces
molecular oxygen to H2O using electrons from the membrane quinone pool and in doing so exports cytoplasmic protons to generate
the proton motive force (PMF) (1). (b) The NADH dehydrogenase II (NDH-II) complex transfers electrons to the quinone pool from
NADH via an FAD cofactor (74). (c) The succinate dehydrogenase (SDH) complex transfers electrons to the quinone pool during
oxidation of succinate to fumarate (92). (d ) The NADH dehydrogenase I (NDH-I) complex contributes electrons from NADH to the
quinone pool and contributes to PMF by directly pumping out protons (73). The redox cycling between the quinone (Q-one) and
quinol (Q-ol) pools is shown schematically. (e) Schematic diagram of the formate hydrogen lyase (FHL) complex that couples oxidation
of formic acid to CO2 by formate dehydrogenase (FdhH) with the reduction of two H+ to molecular hydrogen (H2) by the
hydrogenase-3 complex (HycBCDEFG) (62, 72).

PLP: pyridoxal-5′-
phosphate

pH (38, 58). This would enable the cell to actively counteract cytoplasmic pH drops by directly
exporting protons.

PROTON-CONSUMING ACID RESISTANCE MECHANISMS

The basis of action of these types of acid resistance systems is the direct consumption of
intracellular protons to counteract acid stress. Two major classes have been identified: the
hydrogen-gas-producing formate hydrogen lyase (FHL) complex and the pyridoxal-5′-phosphate
(PLP)-dependent amino acid decarboxylase AR systems.

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 1
Physiological adaptations to acid stress. (a) The action of cyclopropane fatty acyl phospholipid synthase
(CFAS) results in the addition of a methylene group to an unsaturated phospholipid tail (8, 14). (b) The trimeric
outer membrane porin (PhoE)3 (16) is blocked by polyphosphate anions (polyP) (68) and the (OmpC)3 (6) and
(OmpF)3 (16) porins are blocked by cadaverine, the decarboxylation product of the inducible and constitutive
lysine decarboxylases, during acid stress (19, 71). (c) Schematic of the functional cycle of the periplasmic acid-
denatured chaperone HdeA/B (28). The protein is dimeric at neutral pH but dissociates into a partially unfolded
monomer at pH 2.0 (80). The monomer binds to unfolded substrate (SU) at pH 2.0, and the substrate is released
and refolds to the native state SN as the pH returns to neutral. (d ) The cytoplasmic chaperone (Hsp31)2 (65)
functions as a holdase and stabilizes acid-unfolded client proteins during acid stress (61). (e) Dodecameric Dps
forms a protein cage with a hollow interior that sequesters Fe2+ and reduces hydroxyl radical formation (9). The
protein is also capable of protecting DNA by directly binding to and sequestering DNA in large Dps aggregates.
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PLP-dependent
amino acid
decarboxylase: an
enzyme that catalyzes
the removal of the
α-carbonyl group of
an amino acid to
generate CO2 and a
decarboxylation
product

Anaerobic growth under mild acidity induces the Ni2+-dependent hydrogenase-3 complex
(HycBCDEFG), which reduces protons to hydrogen gas (38, 62) (Figure 2e). The electrons
required to reduce H+ are derived from the oxidation of formate by formate dehydrogenase-
H, which together with hydrogenase-3 forms the FHL complex (Figure 2e). The FHL complex
converts formate to CO2 and H2 and is important for survival under anaerobic extreme acid stress.

Four distinct amino acid–dependent AR systems have been characterized, and each has two
components: a cytoplasmic PLP-dependent decarboxylase that catalyzes a proton-dependent
decarboxylation of a substrate amino acid to product and CO2, and an inner membrane
substrate/product antiporter that facilitates the continued operation of the system by exchanging
external substrate for internal product (27). The AR systems are the glutamic acid–dependent acid
resistance (GDAR) system, consisting of the homologous inducible glutamic acid decarboxylases
GadA/GadB enzymes and the glutamate/γ-aminobutyric acid (GABA) antiporter GadC; the
arginine-dependent acid resistance (ADAR) system, consisting of the inducible arginine decar-
boxylase AdiA and the arginine/agmatine antiporter AdiC; the lysine-dependent acid resistance
(LDAR) system, consisting of the inducible lysine decarboxylase LdcI and the lysine/cadaverine
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Antiporter: a
membrane protein that
catalyzes the transport
of two substrates in
opposite directions
down their respective
concentration
gradients

GDAR: glutamic
acid–dependent acid
resistance system

ADAR:
arginine-dependent
acid resistance system

LDAR:
lysine-dependent acid
resistance system

ODAR:
ornithine-dependent
acid resistance system

antiporter CadB; and the ornithine-dependent acid resistance (ODAR) system, consisting of
the inducible ornithine decarboxylase SpeF and the ornithine/putrescine antiporter PotE (45)
(Figure 3a). The GDAR and ADAR systems provide robust protection against extreme acid
stress (13, 53, 54) and enhance survival of cells exposed to SCFAs (36, 54, 60). The LDAR system
operates most efficiently under mild acid stress conditions (27, 44), and the ODAR system is
proposed to play a role under similar conditions (47).

The regulation of the AR systems is complex and our understanding of the various mechanisms
for controlling gene expression is evolving (27, 94). The GDAR system is primarily induced upon
entry into stationary phase (13, 17, 53) but is also activated during exponential growth in acidi-
fied media (12, 88). The gadB and gadC genes are cotranscribed as part of the gadBC operon (89)
(Figure 3b), and gadA is transcribed either alone or in combination with the downstream regulator
protein gadX as part of the gadAX operon (86). Many of the GDAR genes, along with other stress
response genes such as HdeA and HdeB, are found in an acid fitness island (AFI) (Figure 3b),
which is subject to extensive regulation (11, 32, 67, 85). The AFI genes, as well as other acid stress
response genes such as dps and cfa, are under the control of the stationary-phase sigma factor RpoS
(9, 14, 27) and contribute to the increased stress tolerance of stationary-phase cells. The ADAR sys-
tem is induced maximally during growth under anaerobic, acidic (pH ∼ 5.0) conditions in complex
media (7, 59). adiA, the regulatory gene adiY, and the antiporter adiC are found clustered one after
another on the chromosome; however, they are not thought to form an operon (Figure 3b). The
LDAR system is optimally induced under conditions of anaerobic growth at pH 5.5 in rich media
with excess lysine (70). The cadA (coding for LdcI) and cadB genes are found together in the cadBA
operon and these genes are regulated via the upstream cadC gene product (90) (Figure 3b). CadC
has an N-terminal ToxR-like DNA-binding domain, a single-spanning transmembrane helix,
and a C-terminal periplasmic domain composed of two subdomains (24). CadC integrates cadBA

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 3
Amino acid decarboxylases and inner membrane antiporters. (a) A schematic diagram illustrating the components of the amino acid
decarboxylase acid resistance (AR) systems. The inner membrane glutamate/γ-aminobutyric acid (GABA) antiporter (GadC)2 and the
cytoplasmic glutamate decarboxylases (GadA)6/(GadB)6 (10, 20) constitute the glutamic acid–dependent acid resistance system
(GDAR). The inner membrane arginine/agmatine antiporter (AdiC)2 (30) and the cytoplasmic inducible arginine decarboxylase
(AdiA)10 (4) constitute the arginine-dependent acid resistance system (ADAR). The inner membrane lysine/cadaverine antiporter
(CadB)2 and the cytoplasmic inducible lysine decarboxylase (LdcI)10 (44) constitute the lysine-dependent acid resistance system
(LDAR). The ornithine/putrescine antiporter (PotE)2 and the cytoplasmic inducible ornithine decarboxylase (SpeF)2 constitute the
ornithine-dependent acid resistance system (ODAR). The inner membrane chloride/proton antiporter (ClC)2 (2, 21, 22) is involved in
extreme acid stress resistance (27). For the four decarboxylase systems, the decarboxylation reaction is represented schematically:
Substrate is decarboxylated in a proton-dependent manner to form product (red ). The inner membrane antiporter then transports
product to the periplasm (red arrow) in exchange for periplasmic substrate entering the cytoplasm (black arrow). For (ClC)2, periplasmic
Cl− ions ( pink) are exchanged ( pink arrows) for cytoplasmic protons (black arrows). (b) Chromosomal organization of the AR genes and
related regulatory genes; included are genes that compromise the acid fitness island (27, 57, 85). (c) The pH-dependent conformational
change at the N terminus of GadB is shown. The structure of GadB at pH 7.6 (PDB ID: 1PMO) (10) is shown in gray, and
superimposed on this is the structure of GadB at pH 4.6 (PDB ID: 1PMM) where each monomer is colored either red, pink, blue, light
blue, dark green, or green. At low pH, the unstructured N terminus from each monomer forms a helix and the three adjacent helices
form a triple-helical bundle that is stabilized by halide ions ( yellow spheres) at the base of the N-terminal helices. The halide ions’
positions are from Reference 37 (PDB ID: 2DGL, 2DGM). (d ) At pH 4.6 (PDB ID: 1PMM; cyan), the C terminus of GadB is visible
only until residue P452 ( green); however, at pH 7.6 (PDB ID: 2DGK; blue) the C terminus, shown as pink sticks, becomes structured
and blocks access to the active site. In addition, there is a unique aldamine bond between the penultimate histidine (H465) and the
pyridoxal 5′-phosphate (PLP) cofactor ( yellow) (37). (e) The stringent response alarmone ppGpp binds to the LdcI decamer (44). The
top five monomers of the LdcI decamer are colored differently, the bottom five monomers are shown as surface representations, and
the ppGpp molecules are shown as spheres. ( f ) Close-up view of one ppGpp-binding site at the interface between neighboring
monomers in the LdcI decamer. Panels c–f were prepared using PyMOL (18).
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induction via direct sensing of external pH through the periplasmic domain (24, 81) and indirect
sensing of lysine levels via an interaction between the transmembrane helix and the lysine-specific
permease, LysP (82). Finally, the speF and potE genes are located on an operon and are induced dur-
ing growth at low pH (pH ∼ 5.0); however, the regulation of these genes is not well understood (47).

PLP-Dependent Decarboxylases

The cytoplasmic decarboxylases GadA/B, AdiA, LdcI, and SpeF are Fold Type I PLP-dependent
decarboxylases (Figure 3a) and share a conserved PLP-binding domain that is involved in catalyz-
ing the decarboxylation reaction (35, 75). GadA and GadB belong to the glutamate decarboxylase
subclass and each has three domains: a short N-terminal stretch, a large domain that binds PLP,
and a small domain (10). The paralogous AdiA, LdcI, and SpeF belong to the prokaryotic ornithine
decarboxylase (pODC) subclass, which also includes the constitutive lysine decarboxylase (LdcC)
and the constitutive ornithine decarboxylase (SpeC); however, these last two enzymes are not in-
volved in acid stress resistance. Each pODC enzyme has five structural parts: an N-terminal Wing
domain, a core domain composed of a short linker region, a PLP-binding subdomain (PLP-SD),
subdomain four (SD4) [alternatively known as the aspartate aminotransferase (AAT)-like small
domain], and a C-terminal domain (CTD) (4, 45). An important feature of the decarboxylases is
oligomerization. At minimum, all the enzymes form homodimers and this is mediated primarily by
the PLP-binding domain (43). Furthermore, GadA/GadB oligomerize to form hexamers (a trimer
of dimers) (10), and AdiA (4) and LdcI (44) form star-shaped decamers (a pentamer of dimers)
via interaction between the Wing domain and SD4 domains. SpeF is found predominantly in a
dimeric form (45).

The decarboxylases also have optimal enzyme activities that are generally lower than neutral
pH: between pH 3.7 and 3.8 for GadA/GadB (51, 76), between pH 4.9 and 5.2 for AdiA (7, 51),
approximately pH 5.7 for LdcI (29, 70), and pH 7.0 for SpeF (5, 45). The efficiency of the AR
systems to withstand extreme acid stress is correlated with the pH optima of the decarboxylases
(GDAR > ADAR > LDAR � ODAR) (27). The enzyme activity decreases sharply as the pH
increases (37, 45), but because the pH optima range from ∼pH 4 to pH 7, E. coli can mount
a robust acid stress response due to the overlapping activities of the different AR systems (45).
In addition, downregulation of decarboxylase activity as the pH increases may be an important
factor in conserving cellular pools of amino acids and may prevent excessive alkalinization of the
cytoplasm once the external acid stress has been neutralized.

Elucidation of the X-ray crystal structure of GadB at low (pH 4.6) and neutral (pH 7.6) pH
values has shown that the enzyme undergoes a conformational change at its N terminus in response
to changes in pH (10) (Figure 3c). The first 14 N-terminal residues of the protein are largely
unstructured at neutral pH but at low pH form an α-helix. The helices from three adjacent
monomers combine to form a triple-helical bundle that projects outward from the surface of the
structure, which is stabilized by binding to monovalent anions (Cl−, Br−, or I−) at the base of the
helix (37). The helical bundle increases the association of the protein with the inner membrane,
and this is thought to increase the effectiveness of the enzyme as the proton concentration adjacent
to the inner membrane is likely higher here than in the rest of the cell (10). Chloride ions are
also effective in activating GadB and extending the activity of the enzyme over a wider range
of pH values. At neutral pH, GadB activity is drastically reduced and this is accomplished in a
unique fashion. The C-terminal 16 residues block the active site channel of the protein, and the
penultimate H465 residue forms a unique covalent bond at the active site (37) (Figure 3d). In the
active enzyme there is an sp2-hybridized bond between the PLP C4′ and the terminal nitrogen of
K276, forming a Schiff base. However, at neutral pH there is an additional bond formed between
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(p)ppGpp: the
stringent response
alarmone; a mixture of
ppGpp (guanosine 3′,
5′-bis(diphosphate))
and pppGpp
(guanosine
3′-diphosphate,
5′-triphosphate)

Stringent response:
the starvation- and
stress-induced shift
from exponential to
stationary-phase
growth that is
mediated by the
alarmone (p)ppGpp

the distal ring nitrogen of H465 and PLP C4′, resulting in an sp3-hybridized form known as an
aldamine or geminal diamine that results in an inactive enzyme. When the pH decreases, the
aldamine is lost and the C-terminal residues become unstructured, thus freeing up the active site.

AdiA activity is regulated primarily by a change in the oligomerization state of the enzyme (4,
45). At the pH of maximal activity (pH 5.2), the predominant species is the AdiA decamer, which
dissociates into dimers with increasing pH (7). AdiA dimers are inactive at pH 5.2, but at pH 7.2 the
decamers and dimers have similar activity; however, this activity is a small fraction of the maximal
activity found at pH 5.2 (63). This suggests that increasing pH alone may also negatively regulate
enzyme activity irrespective of the oligomeric state. The structure of AdiA has revealed that there
are a large number of negatively charged surface residues, and it has been proposed that an increase
in pH results in an electrostatic repulsion that enhances the decamer-to-dimer transition (4).

LdcI activity is regulated by two distinct mechanisms: oligomerization and the alarmone
(p)ppGpp. The LdcI decamer is the predominant species at low and neutral pH and high enzyme
concentrations, but the protein dissociates to form dimers at high pH (pH 8.0) and low salt
concentrations (3, 44). This dissociation is not enhanced by electrostatic repulsion of negatively
charged surface residues as is the case for AdiA. LdcI activity is strongly inhibited by the effector
molecule of the stringent response (p)ppGpp, and this modified nucleotide binds at a unique
site between neighboring dimers in the decamer (44) (Figure 3e, f ). (p)ppGpp is synthesized
from ATP and GTP in response to nutritional limitation and other stresses and has multiple
pleiotropic effects on RNA synthesis, protein synthesis, and gene regulation, resulting in a switch
from exponential to stationary-phase growth (46). The inhibition of LdcI by (p)ppGpp provides
cells with a rapid and reversible mechanism to regulate the decarboxylation of lysine under
conditions when amino acids become limiting, thus enhancing cell survival. Furthermore, the
paralogous LdcC, SpeF, and SpeC enzymes (but not AdiA) are similarly regulated by (p)ppGpp,
suggesting that this is a common mechanism for modulating consumption of amino acids during
stress and starvation conditions (45).

Inner Membrane Amino Acid Antiporters

The four inner membrane amino acid antiporters GadC, AdiC, CadB, and PotE belong to the
amino acid/polyamine/organocation superfamily of membrane transporters (42). The antiporters,
although sharing relatively low levels of sequence identity, have a common structural fold: They
have 12 transmembrane helices, with the first 10 helices forming the protein core and with helices
TM11 and TM12 involved in dimer formation (25, 30, 55). Among the 10 core helices, the first 5
(TM1–TM5) and the second 5 (TM6–TM10) are related by a pseudo-twofold rotational symmetry
(Figure 4a,b). This feature (a 5+5 inverted repeat) is conserved in a number of other transporter
families, including the sodium-coupled symporters such as LeuT, BetP, and MhlP (25, 30, 49).
In addition, the first helix in TM1 and TM6 is disrupted by a short loop region important for
substrate binding and translocation. Each monomer in the protein dimer is capable of operating
independently (25).

The recent elucidation of a number of high-resolution X-ray crystal structures of AdiC (25,
30, 31, 49) and GadC (55) has provided valuable insights into the mechanism of substrate binding
and transport through the transporter pore. The transporters are proposed to cycle between two
major conformations, periplasmic-open and cytoplasmic-open, each of which exposes a substrate-
binding site to different faces of the membrane. Substrate binding leads to conformational changes
and a transition through an occluded state where the substrate is buried in the transporter (Figure
4c). Structures of apo E. coli AdiC (30) and apo Salmonella enterica serovar Typhimurium AdiC
(95% identical to E. coli AdiC) (25) have been determined in the periplasmic-open conformation,
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Figure 4
Escherichia coli inner membrane antiporters. A schematic of (a) an AdiC monomer (PDB ID: 3OB6) (49) and (b) a GadC monomer
(PDB ID: 4DJI) (55) showing the 12 transmembrane helices. Helices α1–α5 are shown in a light color and the pseudosymmetry-
related helices α6–α10 are shown in a corresponding darker color. The C-terminal plug of GadC is orange. Three views are shown:
from the periplasmic face (top), from within the lipid bilayer (middle), and from the cytoplasmic face (bottom). The approximate position
of the central pore in each transporter is indicated by an asterisk. (c) A schematic of the antiporter transport cycle based on Reference 49
is shown. In the apo state, the protein is open either to the periplasm or to the cytoplasm. Upon substrate binding from either periplasm
or cytoplasm, the protein adopts a partially occluded state before undergoing conformational changes to a symmetrical, fully occluded,
substrate-bound state. From the fully occluded state, the substrate is able to traverse the membrane and the cycle reverses to enable
substrate release. (d–f ) Periplasmic views of the arginine-binding pocket in AdiC. (d ) View of the wild-type Apo form (PDB ID: 3LRB)
(30). (e) View of the N101A mutant arginine-bound form (PDB ID: 3OB6) (49). ( f ) View of the N22A mutant partially occluded,
arginine-bound form (PDB ID: 3L1L) (31). Residues involved in substrate binding are labeled, and helix α6, which undergoes
significant movement upon formation of the substrate-bound and partially occluded states, is green. ( g) Cytoplasmic view of the
proposed GadC-binding pocket (PDB ID: 4DJI) (55). Residues implicated in substrate binding are labeled and the portion of the
C-terminal plug occluding the binding site is orange. This figure was prepared using PyMOL (18).

whereas the structure of E. coli GadC was solved in a cytoplasmic-open conformation (55).
Furthermore, two periplasm-facing structures of E. coli AdiC have been determined to be bound
to arginine: an N101A mutant obtained in a substrate-bound open conformation (49) and an
N22A mutant obtained in an occluded conformation (31).

The arginine-binding site in AdiC and the proposed translocation pathway have residues that
show a high degree of conservation among related orthologs such as CadB and PotE (30). Arginine
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binding is anchored by hydrogen-bonding interactions with the Cα amino and carboxyl groups
(31) (Figure 4d–f ). The guanidinium group takes part in both hydrogen-bonding interactions
and cation-π interactions with two tryptophan residues (W202 and W293). Three distinct gates
have been proposed (with respect to the periplasm) to control binding and passage of arginine:
a proximal gate (S26 and W202) in which binding of the substrate guanidinium group induces
transition from the substrate-bound open conformation to the occluded conformation (49), a
middle gate (W293), and a distal gate (Y93, E208, and Y365). Residues in the last two gates are
thought to undergo rearrangements to accommodate substrate transport (31).

Completion of transport requires transition to the cytoplasmic-open conformation, and
two models have been proposed. In both models, the transmembrane helices are grouped together
into functional units: the bundle (or gate) domain (TMs 1, 2, 6, and 7) and the hash (or core) domain
(TMs 3, 4, 8, and 9). TMs 5, 10, 11, and 12 do not undergo significant movement in either model.
In the first model, the pseudosymmetry of the 5+5 inverted repeat of the core of the transporter
constrains the movement of the protein, with both bundle and hash domains pivoting around the
central pseudosymmetry axis (49). In the second model, the core domain (in addition to TM5 and
TM10) remains fixed, whereas the gate domain undergoes large-scale rigid-body movements (55).

AdiC and GadC show a pH-dependent change in transport activity, with higher transport
activities at lower pH values (25, 55). The pH dependence of different faces of the protein has
been elegantly determined by making use of an AdiC active-site S26C mutant that is selectively
inactivated on either side of the membrane by permeable or impermeable thiol-modifying agents
(87). This technique showed that the extracellular surface of AdiC has a pH optimum between 3
and 4 and is lower than the optimum for the intracellular surface, which has a pH between 5 and 6.
These values correspond relatively well with the known values of internal and external pH during
extreme acid stress (91). AdiC is further constrained during its function under extreme acid stress,
as the protein has to selectively transport singly charged arginine (Arg+) (a minor species below pH
2.3) instead of the doubly protonated arginine (Arg2+) to avoid a futile proton cycle (26, 87). AdiC
binding to the Agm2+ analogue argininamide is approximately fivefold lower on the extracellular
face than when it binds to Agm+, indicating that a mechanism for selecting the correct substrate
exists. Molecular dynamics simulations have suggested a role for E208 in regulating agmatine
release during transport (96), but a detailed understanding of correct substrate selection is still
incomplete. GadC shows a sharper change in pH-dependent transport activity compared with
AdiC. At high pH values, the C-terminal plug (residues 477–511) blocks the transport pathway
and prevents binding of the substrate (55) (Figure 4b,g). Deletion of these residues results in an
increase in activity of the enzyme at high pH and suggests that these residues may either become
disordered or adopt a different conformation to allow substrate transport activity.

Mechanistic insights into the function of CadB and PotE are not as extensive, but mutational
analysis of CadB has identified residues important for substrate transport (78, 79) that were sub-
sequently shown to be important for AdiC activity (25, 30, 31). Recent modeling studies of CadB
and PotE based on the AdiC structures have extended these findings (84).

THE ROLE OF CHLORIDE TRANSPORTERS IN
EXTREME ACID RESISTANCE

Although GDAR and ADAR are the primary systems that operate under extreme acid stress,
Iyer et al. (41) identified a critical role for the homodimeric bacterial chloride transporters (ClC)
(Figure 3a) under such conditions (2, 21, 22). The assumption under their model was that
during extreme acid stress (external pH of 2–3, internal pH ∼ 4.5), HCl would enter the cell in an
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Figure 5
Global view of the Escherichia coli acid stress response. A schematic model showing the coordinated response of the cell to (a) extreme
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uncharged state and subsequently dissociate into H+ and Cl− ions (41). The H+ cation would be
consumed by the GDAR and ADAR systems as described but the presence of the Cl− anion could
lead to hyperpolarization of the transmembrane potential (��). Surprisingly, when radiometric
measurements were made to determine the internal pH and �� during extreme acid stress, it
was found that E. coli cells reverse their �� (66) (Figure 5a). The inside-positive state is thought
to result from a buildup of the more positively charged decarboxylation products (GABA and
agmatine) that would necessarily accumulate in order to drive the exchange for fresh substrate via
the antiporters GadC and AdiA. Furthermore, H+ ions from the media are thought to enter the
cell in a charged state and not as uncharged HCl. An inside-positive �� could act to reduce the
influx of protons via charge repulsion. Under these conditions, the ClC protein is thought to
function as a H+/Cl− exchanger, driving the efflux of H+ ions in exchange for Cl− ions from
the media; this is important in restoring the correct �� (inside-negative) once the extreme acid
stress condition has abated (27, 66).

CONCLUSION

For a neutralophile, E. coli is capable of mounting an effective resistance to an unexpectedly wide
range of acid stress conditions thanks to the large number of acid stress response systems present
in the cell. A summary of the systems that are active during extreme acid stress (Figure 5a) and
mild acid stress (Figure 5b) is discussed. At a certain level, it is expected that all these systems
must coordinate their response, which is currently poorly understood and is in need of further
investigation. Some of these systems may be appropriate targets for the development of novel
antimicrobials.
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SUMMARY POINTS

1. E. coli has three general types of active AR systems: physiological, metabolic, and proton-
consuming.

2. The periplasm has physiological adaptations to acid stress, including membrane modifi-
cations and outer membrane porins that reduce proton influx, as well as pH-dependent
chaperones.

3. Proton efflux can be coupled to metabolism via components of the electron transport
chain (NDH-I, NDH-II, SDH, and cytochromes).

4. Under anaerobic growth conditions the FHL complex converts protons to H2 gas.

5. Four proton-consuming amino acid–dependent acid resistance systems, ADAR, GDAR,
LDAR, and ODAR, consist of a cytoplasmic decarboxylase and an inner membrane amino
acid antiporter.

6. AdiA, GadA/B, LdcI, and SpeF decarboxylate substrate amino acids (arginine, glutamic
acid, lysine, ornithine) in a proton-consuming reaction, which is catalyzed by PLP, to
form the products CO2 plus agmatine, GABA, cadaverine, and putrescine, respectively.

7. The inner membrane antiporters AdiC, GadC, CadB, and PotE catalyze the an-
tiport of specific substrate/product pairs (arginine/agmatine, glutamic acid/GABA, ly-
sine/cadaverine, and ornithine/putrescine).

8. ADAR and GDAR provide protection against extreme acid resistance. LDAR provides
protection against mild acid resistance, and the regulation of this protein is linked to the
stringent response via (p)ppGpp.
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