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The two closely related AAA + family ATPases Rvb1 and Rvb2 are part of several critical multiprotein com-
plexes, and, thus, are involved in a wide range of cellular processes including chromatin remodelling, telome-
rase assembly, and snoRNP biogenesis. It was found that Rvb1 and Rvb2 form a tight functional complex with
Pih1 (Protein interacting with Hsp90) and Tah1 (TPR-containing protein associated with Hsp90), which are
two Hsp90 interactors. We named the complex R2TP. The complex was originally isolated from Saccharomyces
cerevisiae and was, subsequently, identified in mammalian cells. R2TP was found to be required for box C/D
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Rvb1 snoRNP biogenesis in yeast and mammalian cells. More recently, several studies revealed that the complex is
Rvb2 also involved in multiple biological processes including apoptosis, phosphatidylinositol-3 kinase-related protein
Tah1 kinase (PIKK) signalling, and RNA polymerase II assembly. In this review, we describe the discovery of the
Pih1 complex and discuss the emerging critical roles that R2TP plays in distinct cellular processes. This article is
R2TP part of a Special Issue entitled: AAA ATPases: structure and function.

Complex assembly

© 2011 Elsevier B.V. All rights reserved.

1. Background

Rvb1 and Rvb2 are closely related AAA + (ATPases associated with
diverse cellular activities, Fig. 1A,B) ATPases [1,2] and are homolo-
gous to the bacterial RuvB DNA helicase [3,4]. Rvb1 and Rvb2 are
highly conserved in eukaryotes and are known by multiple names in-
cluding RuvBL1, Tip49, Pontin52, Tih1, and TAP54« for Rvb1, and
RuvBL2, Tip48, Reptin52, Tih2, and TAP54p3 for Rvb2 [5-10]. Rvbl
and Rvb2 have been found to be involved in diverse cellular processes
such as chromatin remodelling, transcription, telomerase complex as-
sembly, small nucleolar ribonucleoprotein (snoRNP) biogenesis,
phosphatidylinositol-3 kinase-related protein kinase (PIKK) signal-
ling, RNA polymerase II (RNAP II) assembly, mitotic spindle assembly,
and apoptosis [2,6,7,11-25].

In systematic genome-wide screens for Hsp90-interacting proteins
in Saccharomyces cerevisiae [26], we identified 627 putative Hsp90
interacting proteins including two proteins which, at that time, were
uncharacterized and which we termed Pih1 (Protein interacting with
Hsp90, YHR034(, Fig. 1A) and Tah1 (TPR-containing protein associated
with Hsp90, YCRO60W, Fig. 1A). Pih1, also known as Nop17, and Tah1
bound tightly to Rvb1 and Rvb2 to form what we termed the R2TP
(Rvb1-Rvb2-Tah1-Pih1) complex [26]. Hence, the R2TP complex was
initially discovered by our group as an Hsp90-associated multiprotein
complex (R2TP-Hsp90 complex) in yeast [26]. Subsequently, a
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proteomic analysis of human Hsp90 interactors identified the human
orthologs of Rvb1, Rvb2, Pih1, as well as, the Tahl counterpart as
Hsp90 interactors [27], and the human R2TP complex was immuno-
purified from human cell lysates [20]; hence, the R2TP-Hsp90 complex
is widely-conserved in eukaryotes. In mammalian cells, the R2TP com-
plex also contains some subunits of the Prefoldin complex namely
PFDN2 and PFDNG6, as well as Prefoldin-like proteins UXT, RPB5,
WDR92/Monad, PDRG1, and URI [18,28-30]. Both the yeast and
human complexes were shown to be involved in box C/D snoRNP bio-
genesis [20,21].

Yeast Pih1 interacts with snoRNP/ribosome biogenesis-related
proteins such as Rrp43, a component of the exosome; Nop58, a com-
ponent of box C/D snoRNP; Nop53, an essential nucleolar protein; and
Cwc24, a RING-finger protein related to pre-U3 snoRNA splicing
[26,31-33]. The human Pih1, known as PIH1D1 (Fig. 1B), interacts
with box C/D snoRNP factors Nop1/fibrillarin, Nop58, Nop56, Tel2
which is a protein required for PIKK protein stability, and
WDR92/Monad which is a Prefoldin-like protein containing WD40
repeat [19,20,29,34-36]. The yeast Pih1 is an unstable protein and
is prone to be targeted for degradation in vivo and to aggregation in
vitro. However, Pih1 is stabilized by its binding to Hsp90 and Tah1
[21].

Tah1l contains tetratricopeptide repeat (TPR) motifs (Fig. 1A),
which are known to mediate the interaction of Hsp90 with its cofac-
tors [37]. By testing the effect of Tah1 on Hsp90 activity, Tah1 was
shown to be an Hsp90 cofactor [26]. RPAP3 (FLJ21908), also known
as hSpagh, has been identified as the human counterpart of Tah1 in
the R2TP complex in human cells [18,20]. However, while yeast
Tah1 is 111 residues long and has 2 TPR motifs (Fig. 1A), RPAP3 is
665 residues long and has 6 predicted TPR motifs (Fig. 1B).
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Fig. 1. Schematic representation of R2TP. (A) Yeast R2TP proteins: Rvb1, Rvb2, Tah1, and Pih1. (B) Human R2TP proteins: RuvBL1, RuvBL2, RPAP3, and PIH1D1. Yeast Rvb1/Rvb2 and
human RuvBL1/RuvBL2 contain the conserved motifs: Walker A, insertion domain proposed to bind DNA/RNA, Walker B, sensor 1, arginine finger, and sensor 2. Yeast Tah1 and
human RPAP3 contain TPR motifs. Yeast Pih1 and human PIH1D1 contain the PIH1 domain (also refer to Fig. 3). The domain arrangement of Rvb1, Rvb2, RuvBL1, and RuvBL2 is
based on the solved X-ray structure of RuvBL1 [38]. The domain arrangement of Tah1 and RPAP3 is based on the SMART database [83]. While the domain arrangement of Pih1

and PIH1D1 is based on the CDD database [84]. (C) Model of the yeast R2TP complex.

Below, the terms Rvb1, Rvb2, Tah1, and Pih1 will be used when
discussing the yeast proteins (Fig. 1A), and the terms RuvBL1,
RuvBL2, RPAP3, and PIH1D1 (Fig. 1B) will be used when referring to
the mammalian proteins. It should be noted that the human genome
contains a PIH1D2 which is 21% identical and 38% similar to PIH1D1,
but has not been shown to be part of the R2TP complex.

2. Assembly of the R2TP complex

The interactions among the different components of the yeast
R2TP-Hsp90 complex have been analyzed [21] (Fig. 1C). The full
length Tah1, i.e. the two TPR motifs and the C-terminus (Fig. 1A), in-
teracts with the C-terminal MEEVD motif of Hsp90, while the C-terminus
of Tah1 is sufficient to bind Pih1. There is no evidence that Tah1 directly
binds the Rvbs. On the other hand, Pih1 binds Tah1, Hsp90, and the
Rvbs. More recently, the C-terminus of Pih1 was found to bind to the
C-terminus of Tah1 (Fig. 1C).

Yeast Rvb1/Rvb2 and human RuvBL1/RuvBL2 have one AAA +
domain containing the conserved motifs: Walker A, Walker B, sen-
sor 1, arginine finger, and sensor 2 (Fig. 1A). An insertion domain,
which is proposed to bind DNA/RNA [38], is present between the

Walker A and Walker B motifs (Fig. 1A). The location of the insertion
domain within the AAA 4+ domain is reminiscent of the location of
the helical I domain within the AAA + domain of the unfoldase chap-
erone HslU/ClpY [39,40]. However, there is currently no molecular
understanding as to how nucleotide binding and hydrolysis affects
the conformation of this domain or of the complex. In the electron
microscopy images obtained by our group of the yeast Rvb1/Rvb2
complex [41], different conformations of the Rvb1/Rvb2 complex
were observed in the presence of ADP, ATP, and ATPvS. Hence, it
is reasonable to suggest that the insertion domain in the Rvbs
might change conformation or orientation in a nucleotide dependent
manner.

The oligomeric state of the Rvbs is rather controversial. We pro-
posed that the yeast Rvb1/Rvb2 form a single heterohexameric ring
in a 1 to 1 molar ratio [41-43]. Other groups proposed that the Rvbs
form a double hexameric ring structure with each ring possibly
being a homohexamer of each Rvb [44,45]. In either case, Pihl
seems to act as an adaptor that links Hsp90 and Tah1 to Rvb1/Rvb2
(Fig. 1C). Although the stoichiometry of the different subunits of the
R2TP complex is not established, the data currently available to us
seems to indicate that Rvb1-Rvb2-Tah1-Pih1 are present at 3:3:1:1
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ratio. Fig. 1C provides a schematic of our current understanding of
how this complex might be assembled in yeast.

The formation of the human R2TP complex is generally similar to
that of the yeast complex, although some differences have been ob-
served since RPAP3 is much larger than yeast Tahl (Fig. 1A, B).
RPAP3 interacts with Hsp90 and PIH1D1 and directly binds to
RuvBL1 and, as a result, indirectly associates with RuvBL2 [20];
PIH1D1-RuvBL1 interaction is enhanced in the presence of RuvBL2.
Interestingly, the PIH1D1-RuvBL1 and PIH1D1-RuvBL1/RuvBL2 inter-
actions are abolished in the presence of ATP [23].

3. R2TP in Box C/D snoRNP Biogenesis

Before the discovery of the R2TP complex, the Rvbs had been identi-
fied as essential components of the INO80 and SWR-C ATP-dependent
chromatin remodelling complexes. These complexes are involved in
transcription, DNA repair, DNA replication, cell cycle checkpoint regula-
tion, chromosome segregation, and telomere maintenance [46]. The
Rvbs were also known to be involved in box C/D and box H/ACA snoRNA
biogenesis in yeast and human cells [17,47]. Additionally, it had been
shown that Pih1 and Rvb1/Rvb2 form a complex that is separate from
the INO80 and SWR-C complexes [16]. Shortly after that, Pih1 was iden-
tified to interact with Nop58, an essential component of box C/D
snoRNP in yeast [31]. Independently of these observations, the R2TP
complex was isolated by our group as an Hsp90-interacting complex
in yeast, as mentioned above, and was, subsequently, determined to
be involved in box C/D snoRNP biogenesis in yeast [21] and human
cells [20].

In yeast, disrupting the R2TP complex by deleting the pihl gene
leads to decreased accumulation of box C/D snoRNAs [21]. Aberrant
stoichiometry of the protein components of box C/D snoRNP complex
is observed in pih1A or hsp90 mutants, suggesting that the R2TP-
Hsp90 complex is responsible for box C/D snoRNP assembly (Fig. 2A).
Additionally, Rsal (Nufip in mammals), a nucleoplasmic protein in-
volved in the assembly of 60S ribosomal subunits [48], has been
shown to promote the interaction between box C/D snoRNP and R2TP
complexes by specifically binding Snu13, Pih1, Rvb1, and Rvb2 [20].

In mammals, RuvBL1, RuvBL2, Nop56, and Nop58 were identified
in nuclear extracts of mouse Taper ascites cells as box C/D snoRNA-
associated nucleoplasmic proteins [49,50]. The human R2TP complex
directly associates with core box C/D snoRNP proteins and also with
other snoRNP accessory proteins [19,20,23,51]. Human Pih1D1 directly
associates with fibrillarin/Nop1, Nop58, and Nop56. Human RuvBL1 and
RuvBL2 individually interact with all core box C/D snoRNP factors:
fibrillarin/Nop1, Nop56, Nop58, and 15.5 K/Snu13. PIH1D1 also inter-
acts with Snurportin1, an msG cap-binding import factor [52]; TAF9, a
TATA box binding protein (TBP)-associated factor identified as a
NOP56 binding protein in a yeast two-hybrid screen [53]; and NUFIP
(yeast Rsal homolog), a zinc-finger protein that associates with the
fragile X mental retardation protein (FMR1) [54]. Also, human
RuvBL1/2 complex interacts with BCD1, which is a zinc-finger protein
required for box C/D snoRNA accumulation in yeast [55].

It has been shown in human cells that box C/D snoRNP complex
assembles hierarchically with the initial formation of box C/D
snoRNA-15.5 K/Snu13 subcomplex, which is required for the subse-
quent association of the other snoRNP components [56]. NOP56 and
fibrillarin/Nop1 are able to bind box C/D snoRNA in the absence of
Nop58, RuvBL1, and RuvBL2; while RuvBL1 and RuvBL2 bind snoRNA
together with Nop58. The depletion of RuvBL1 or RuvBL2 in HeLa cells
results in decreased levels of mature box C/D snoRNA [23]. This de-
pletion also affects the trafficking of box C/D snoRNPs to Cajal bodies,
which are nuclear compartments through which snoRNPs transit be-
fore entering the nucleolus [57].

Taken together, the data indicate that the yeast and human R2TP
complexes have essential roles in box C/D snoRNP assembly and
translocation from the nucleoplasm to the nucleolus (Fig. 2A).

4. R2TP in PIKK signalling

Recently, the R2TP complex has been found to be involved in
phosphatidylinositol-3 kinase-related protein kinase (PIKK) signal-
ling pathways [24,58,59] (Fig. 2B). There are six PIKKs in mammals:
ataxia-telangiectasia mutated (ATM), ataxia- and Rad3-related
(ATR), DNA-dependent protein kinase catalytic subunit (DNA-PKcs),
mammalian target of rapamycin (mTOR), suppressor of morphogene-
sis in genitalia (SMG-1), and transformation/transcription domain-
associated protein (TRRAP). These PIKKs function in a wide range of
cellular processes [60]. ATM, ATR, and DNA-PKcs are responsible for
DNA damage response. mTOR controls cell metabolism and growth
in response to mitogenic signals and nutrient availability. SMG-1 is
a component of the mRNA surveillance complex involved in non-
sense-mediated mRNA decay (NMD) and, hence, regulates the degra-
dation of mRNAs containing premature stop codons. TRRAP is a
component of several histone acetyltranferase complexes, such as
SAGA, PCAF, and TIP60, and it regulates transcription and functions
in DNA repair [61]. Several studies revealed that R2TP-Hsp90 com-
plex plays an essential role in the stability and assembly of PIKKs in
mammals [24,58,59].

RuvBL1 and RuvBL2 interact with all PIKKs and knockdown of
RuvBL1 or RuvBL2 or treating the cells with Hsp90 inhibitor decreases
mRNA levels of ATM, ATR, DNA-PKcs, mTOR, and TRRAP, but not
SMG-1 [24]. Furthermore, the RuvBL1/2 complex is required for phos-
phorylation and activation of direct downstream effectors of ATM,
ATR, mTOR, and SMG-1: Chk2, Chk1, p70 S6K, and Upf1, respectively.
A function of the RuvBL1/2 complex in the regulation of SMG-1 activ-
ity has been characterized [24]. SMG-1 is a component of the SMG1C
multiprotein complex which is essential for NMD, composed of SMG-1,
SMG-8, and SMG-9. R2TP and Hsp90 have been shown to interact with
SMGI1C and also with its associated proteins: SMG-10 and RPB5.
RuvBL1 and RuvBL2 are needed for SMG-1-mediated Upf1 phosphory-
lation, and RuvBL1 ATPase activity is essential for this phosphorylation
to occur [24]. Also, it has been suggested that this Upf1 phosphorylation
results from the sequential remodeling of mRNA surveillance complexes,
SURF (SMGT, UPF1, eRF1, and eRF3) and DECID (decay-inducing), which
is performed by RuvBL1/RuvBL2. Hence, R2TP-Hsp90 plays an essential
role in the formation of the mRNA surveillance complex during NMD.

The interaction between the R2TP complex and PIKKs is mediated by
Tel2 [58]. The yeast Tel2 is a DNA binding protein that binds single-
stranded telomeric DNA repeats and was originally identified in a
screen for mutants with short telomeres [62]. Further studies revealed
that Tel2 is involved in diverse cellular processes, such as DNA repair,
DNA damage response, and circadian rhythm. [63-66]. Recently, inter-
actions between Tel2 and all six PIKKs were identified in mammals
and fission yeast, and it was shown that this interaction is required for
the stability of PIKKs [34,67]. It was also shown that the Tel2 complex
(Tel2-Tti1-Tti2) interacts with R2TP-Hsp90 complex. Interestingly,
Tel2 was found to be constitutively phosphorylated on conserved serine
residues 487 and 491 by casein kinase 2 (CK2), a serine/threonine kinase,
in vitro and in vivo [58]. R2TP together with subunits of the Prefoldin-like
complex (PFDN2, UXT, URI, RPB5, and WDR92/Monad) interact with the
phosphorylated form of Tel2 and this interaction is mediated by PIH1D1.
Hence, it is proposed that Tel2 acts as a scaffold protein, assembling R2TP-
Hsp90/Prefoldin-like complex with PIKKs to stabilize/assemble the
PIKKs, especially mTOR and SMG1 (Fig. 2B).

5. R2TP in RNA polymerase II assembly

The R2TP-Hsp90 complex together with Prefoldin-like complex
(PFDN2, PFDN6, UXT, RPB5, WDR92/Monad, PDRG1, and URI) have
been identified as RNA polymerase Il (RNAP II) interacting proteins
and have been shown to be involved in RNAP II assembly [28,30]
(Fig. 2C). Boulon et al. [28] studied the assembly mechanism of
RNAP II in human cells using a combination of quantitative mass
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Fig. 2. R2TP complex functions. (A) R2TP complex functions in box C/D snoRNP assembly. R2TP complex, together with Hsp90, is required for the assembly of the box C/D snoRNPs
and promotes their translocation from the nucleoplasm to the nucleolus. (B) R2TP complex functions in PIKK stability and assembly. Newly synthesized PIKK interacts with Tel2
assisted by Hsp90. Phosphorylated Tel2 then mediates the interaction between PIKK and R2TP-Prefoldin complex to eventually lead to the proper assembly of PIKK. (C) R2TP com-
plex functions in RNA polymerase Il assembly. R2TP-Hsp90-Prefoldin complex interacts with unassembled Rpb1. RPAP3 also associates independently with Rpb5. The R2TP-Hsp90-
Prefoldin complex promotes the cytoplasmic assembly of RNAP II and its translocation to the nucleus. All the numbers refer to RNAP II subunits Rpb1 to 12.

spectrometry-based proteomic analysis, which makes it possible to
measure the relative abundance of a number of proteins, and fluores-
cence microscopic observations. The authors noted that treatment of
cells with a-amanitin and leptomycin B (LMB) leads to accumulation
of unassembled Rpb1 in the cytoplasm. ac-amanitin specifically binds
Rpb1, a large subunit of RNAP II, and induces RNAP II disassembly,
transcription arrest, and degradation of Rpb1 in vivo [68,69], while
LMB is a specific inhibitor of the exportin CRM1 [70]. Furthermore,
depletion of any subunit of RNAP II causes the cytoplasmic accumula-
tion of Rpb1. These observations suggest that the assembly of RNAP II
occurs in the cytoplasm and that this cytoplasmic assembly is essen-
tial for its nuclear import.

Taking advantage of this combinational drug effect, which stabi-
lizes unassembled Rpb1 or Rpb1-containing intermediates of RNAP
Il in the cytoplasm, quantitative MS analysis was performed on
Rpb1 complex immunopurified from cells untreated or treated with
a-amanitin and LMB. Treatment with the drugs decreased the

association of most of the RNAP II subunits with Rpb1 except for
Rpb8, whereas, the R2TP/Prefoldin-like proteins (RPAP3, PFDN2, and
UXT) and other RNAP II binding proteins (RPAP2, GPN1, GPN3, and
GrinL1A) were found bound to Rpb1. To verify this result, further
MS analysis was performed on Rpbl complexes immunopurified
from cells treated and untreated with actinomycin D, which inhibits
transcription but does not induce degradation of RNAP II subunits or
cytoplasmic accumulation of Rpb1 [28,68]. Under these conditions,
less association of the R2TP/Prefoldin-like complex with Rpb1 was
detected. These results show that R2TP/Prefoldin-like complex pref-
erentially interacts with unassembled Rpb1 (Fig. 2C). Quantitative
MS analysis of RPAP3 complex immunopurified from untreated cells
identified the components of the Prefoldin-like complex (PDRGI,
PFDN2, PFDNG, URI, UXT, and WDR92) and four of the RNAP II sub-
units (Rpb1, Rpb2, Rpb5, and Rpb8). Interestingly, it was shown
that RPAP3 interacts with unassembled Rpb1 predominantly in the
cytoplasm, and that RPAP3 was also found to associate with Rpb5
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independently of the Rpbl-containing subcomplex. Depletion of
RPAP3 led to destabilization of the cytoplasmic Rpb1. Furthermore,
inhibition of Hsp90 activity with geldanamycin (GA) destabilized
unassembled Rpb1 that accumulated upon either c-amanitin + LMB
treatment or Rpb2 depletion. Based on these experiments, it was con-
cluded that the R2TP-Hsp90/Prefoldin-like complex is required for
proper assembly of RNAP II in the cytoplasm by specifically associat-
ing with unassembled Rpb1 [28,68]. Fig. 2C shows a simplified sche-
matic of the proposed assembly pathway for RNAP II.

6. R2TP complex in apoptosis

RPAP3, RuvBL2, and PIH1D1 of the human R2TP complex have
been identified as Monad/WDR92 interacting proteins [35,36]. As
mentioned above, Monad/WDR92 is a subunit of Prefoldin-like com-
plex; it is a WD40 repeat protein that was found to be involved in ap-
optosis [71]. The overexpression of either Monad/WDR92 or RPAP3 in
HEK293 cells enhances apoptosis and caspase-3 activation induced by
tumour necrosis factor-a (TNF-a) and cycloheximide (CHX), where-
as the depletion of RPAP3 significantly reduces the induction of apo-
ptosis, suggesting that Monad/WDR92 and RPAP3 could be
modulators of the apoptotic pathway [35,71]. Also, overexpression
of RPAP3 promotes UV-induced cell death, while knockdown of
RPAP3 decreases cell death. In contrast, knockdown of RuvBL2 en-
hances cell death upon UV treatment. Furthermore, depletion of
PIH1D1 promotes apoptosis and caspase-3 activation induced by
doxorubicin in U20S osteosarcoma human cells [36].

RPAP3 has also been identified to repress NF-«B pathway, which is
activated by DNA damage stress and which mediates a cell survival
pathway [72]. The activation of the NF-kB is initiated by a signal-in-
duced phosphorylation and subsequent ubiquitination and degradation
of IB (Inhibitor of kB) proteins. This kB phosphorylation is performed
by IKK (IkB kinase). IKK is composed of IKKc, IKK(B, and IKKy/NEMO
(NF-xB essential modulator) [73]. The polyubiquitination of IKKvy/
NEMO plays an essential role in the activation of the IKK complex
[74]. Tt was shown that RPAP3 interacts with IKKy/NEMO and that the
overexpression of RPAP3 inhibits the polyubiquitination of IKKy/NEMO
and enhances doxorubicin-induced cell death through the inhibition of
NF-kB pathway.

Taken together, the data indicate that RPAP3 and Monad/WDR92
are pro-apoptotic, while PIH1D1 and RuvBL2 are anti-apoptotic, sug-
gesting that the R2TP proteins may have additional separate functions
in apoptosis or that each subunit differentially regulates the activity
of the R2TP complex [71,72].

7. PIH1 family proteins in axonemal dynein assembly

Characterization of Pih1 function in box C/D snoRNP and PIKKs
and to some extent RNAP Il assembly strongly suggests that it mainly
functions as an adaptor to target the R2TP-Hsp90 complex to client
proteins. Interestingly, Pih1 adaptor function was also identified for
other PIH1 family proteins, namely, Ktu/PF13 and MOT48. These pro-
teins have weak sequence similarity with yeast Pih1 (Fig. 3) and are
involved in the assembly of the dynein arms in flagella/cilia [75,76].
Flagella/cilia are highly organized microtubule-based structures that

PIH1 family proteins

(H. sapions) o em
| 1111111/

PF13
(C. reinhardtii)

are composed of complex components such as radial spokes, a ring
of nine doublet microtubules surrounding a pair of single microtu-
bules called the central pair, and inner and outer dynein arms (IDA
and ODA) tightly anchored to the outer doublet microtubules [77].
IDA is required for proper flagellar waveforms, whereas ODA is neces-
sary for highly frequent flagellar beating [78]. Omran et al. [75] found
a medaka (Oryzias latipes/Japanese Kkillifish) mutant, which they
named ktu (Kintoun), that shows defects in cilia motility in Kupffer's
vesicle, an epithelial sac containing fluid that is required for left-right
asymmetry, as well as, defects in sperm motility. This mutant exhib-
ited partial or complete loss of IDAs and ODAs. Positional cloning
identified the mutation to be a premature stop codon in a gene
encoding 588 amino acids with weak sequence similarity to yeast
Pih1. An ortholog of Ktu was identified in human cells (C14o0rf104).
Mutation of human Ktu causes primary ciliary dyskinesia (PCD),
which is characterized by a complete loss in the motility of respirato-
ry cilia and sperm flagella due to abnormal axonemal dynein arms
[75].

Ktu function has been extensively analyzed in Chlamydomonas,
which has a Ktu ortholog named PF13 (Fig. 3). PF13 mutant has a para-
lyzed flagella phenotype caused by impaired formation of IDAs and
ODAs. Chlamydomonas dynein arms are preformed in the cytoplasm
[79,80], and the pre-assembled dynein complex is then transported to
the flagellar compartment by intraflagellar transport (IFT) [81,82].
PF13 was found to be required for cytoplasmic pre-assembly of ODA
heavy chains with intermediate and light chains, but not for the interac-
tion between intermediate chains and light chains. The mouse ortholog
of Ktu (mKtu) was found to interact with one of the intermediate chains
and with Hsp70. It is speculated that Ktu/PF13 could function as a co-
chaperone of Hsp70 to facilitate the cytoplasmic pre-assembly of dy-
neins [75]. Recently, another PIH1 family protein in Chlamydomonas,
MOT48 (Fig. 3), has also been shown to be required for the pre-assem-
bly of axonemal dyneins, especially IDAs [76].

The above observations suggest that PIH1 family proteins are general-
ly responsible for the pre-assembly of different subsets of axonemal dy-
neins. However, at this point there is no indication whether RuvBL1/2
or Hsp90 also play a role in dynein-related assembly pathways.

8. Mechanism of the function of R2TP complex

Although Rvb1/Rvb2 are involved in a number of cellular process-
es by interacting with different protein complexes, the function of the
R2TP complex is more specifically related to maturation/assembly of
certain protein complexes such as snoRNP biogenesis, PIKKs signal-
ling, and RNA polymerase II In general terms, it has been found that
Pih1 and/or RPAP3/Tah1 in the R2TP complex specify the target to
be acted upon by Rvb1/Rvb2, and that Pih1/Tah1 assist in the interac-
tion between Rvb1/Rvb2 and those targets. In the case of snoRNP and
PIKK complex assembly, Pih1 works as an adaptor protein which me-
diates interaction between the R2TP complex and either box C/D
snoRNP or PIKK complexes. In RNA polymerase Il assembly, the process
is initiated by the interaction of RPAP3/Tah1 with an unassembled sub-
unit of RNA polymerase Il. After the association of R2TP complex
with its substrates, Rvb1/Rvb2 promote the assembly/maturation of
the multiprotein complex by their proposed chaperone activity.

837

675

MOT48
(C. reinhardftii)

| 451

Fig. 3. PIH1 family proteins involved in dynein assembly. Domain organization of the PIH1 family proteins Ktu (human), PF13 (chlamydomonas), and MOT48 (chlamydomonas) are
shown as obtained using the CDD database [84]. Note that the PIH1 domain of PF13 is interrupted by a low complexity region indicated by the stripes.
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Although Rvb1/Rvb2 has demonstrated ATPase and helicase activities, it
remains unknown how R2TP assemble the multiprotein complexes and
how the motor function of the Rvb1/Rvb2 relates to the assembly pro-
cesses. Furthermore, this chaperone or chaperone-like activity of the
R2TP complex can be further modulated by other chaperones such as
Hsp90 and Prefoldin-like complex through direct interactions.

9. Conclusion

The R2TP complex was found in a screen for Hsp90 interactors in
yeast [26]. Since then, this complex has been shown to be highly con-
served in eukaryotes and to be involved in several specific cellular
processes including box C/D snoRNP biogenesis, PIKK signalling, and
RNAP II assembly (Fig. 2). Its general role seems to be in the assembly
of multiprotein/multiprotein-RNA/multiprotein-DNA complexes. Al-
though studies of the R2TP complex in different biological processes
have greatly advanced our understanding of its functions, much re-
mains to be learned about the molecular basis of its activity. Future
structural and functional studies focused on determining the exact
molecular activity of R2TP on its target substrates will be critical in
furthering our understanding of this important complex.
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