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Chapter 15

Bioinformatic Approach to Identify Chaperone Pathway 
Relationship from Large-Scale Interaction Networks

Yunchen Gong, Zhaolei Zhang, and Walid A. Houry 

Abstract

We describe a computational protocol to identify functional modules and pathway relationship of chaper-
ones based on physical interaction data derived from high-throughput proteomic experiments. The proto-
col first identifies interacting proteins shared by the different chaperone systems to organize the chaperones 
into functional modules. The chaperone functional modules represent groups of chaperones that are 
involved in mediating the folding of the shared interacting proteins. Either the chaperones in a module can 
function along a single folding pathway of a given substrate protein or the substrate protein might have 
two or more different folding pathways that the chaperones act on independently. As described in our 
computational protocol, probabilities of these pathway relationships between two chaperones in a two-
component chaperone module can be determined using whole-genome expression and cellular pathways 
as reference. This protocol is potentially useful for identifying functional modules and pathway relation-
ships in other biological systems that involve multiple proteins with many identified interactions.
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Molecular chaperones represent a large and diverse group of 
proteins whose general function is to maintain protein homeostasis 
in the cell (1, 2). Consequently, molecular chaperones play a wide 
range of cellular roles including protein folding and unfolding, 
protein disassembly and disaggregation, protein degradation, 
protein translocation, endoplasmic reticulum associated protein 
degradation (ERAD), and ribosomal RNA processing among many 
other functions. In the well-studied model organism Saccharomyces 
cerevisiae (budding yeast), there are 7 small heat shock proteins, 
3 chaperones of the AAA+ family, 8 of the CCT/TRiC complex, 
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6  of the prefoldin/GimC complex, 22 Hsp40s, 1 Hsp60 (& 1 
Hsp10), 14 Hsp70s, and 2 Hsp90s (3). These 63 chaperones are 
localized in the cytoplasm/nucleus, mitochondria, and the endo-
plasmic reticulum.

Recently, we have identified the TAP-tag based interactors for 
all of these chaperones (4). A total of 21,687 unique pairs of inter-
actions were identified with high confidence. These interactions 
are between the 63 chaperones and a total of 4,340 other proteins; 
in addition, there are 259 chaperone–chaperone interactions. All 
of our data is deposited in a publicly database that we created and 
termed ChaperoneDB (http://chaperonedb.ccbr.utoronto.ca/).

Two chaperones interacting with a given protein might func-
tionally collaborate to assist in the folding of that protein or one 
chaperone might be redundant with the other. Both of these sce-
narios had been experimentally observed (see e.g. refs. 5, 6). In the 
former case, the chaperone-assisted folding of the substrate protein 
is along a single pathway, while in the latter case, the chaperone-
assisted folding can proceed along alternate multiple parallel path-
ways (Fig. 1). Analysis of the large-scale chaperone interaction data 
that we have recently published (4) allowed us to identify “chaper-
one modules,” herein defined as a group of chaperones interacting 
with a common set of proteins. It also allowed us to determine 
whether chaperones in a two-component module act along single 
or multiple folding pathways for a given protein substrate (Fig. 1). 
In this chapter, we present the details of the protocol applied in 
that previous work and focus on the algorithmic and programming 
aspects.

Fig. 1. The schematic depicts chaperone-mediated single pathway and multiple pathways 
folding models.
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Briefly, our protocol consists of four steps: (1) Raw interac-
tions are first filtered based on their experimental scores and dem-
onstrated interactions in public interaction databases. (2) Chaperone 
functional modules are then inferred based on the numbers of 
shared interaction partners using a Z-score criteria. (3) To reveal 
the pathway relationships between the chaperones in a two-com-
ponent functional module, genome-scale gene expression data are 
analyzed for all protein pairs located in the same and/or different 
pathways. (4) Finally, a statistical integration approach is applied 
for calculating the probability of the pathway relationship of the 
two chaperones.

This bioinformatic protocol relies heavily on implementations of a 
variety of algorithms for data processing and analysis. Some of 
them are simply implemented in a programming language of user’s 
choice, while others are found in existing software packages. 
A scripting language such as PHP (http://www.php.net) and Perl 
(http://www.perl.org) is good enough for routine data processing 
such as custom data sorting, simple calculations, and visualization. 
The statistical package R (http://www.r-project.org/) is used to 
calculate enrichment of the documented protein–protein interac-
tions in the target dataset. This is useful for data filtering. The 
network visualization package CytoScape (7) is used for visualiza-
tion of complex networks. When colors of nodes and edges are 
varied, it is much easier to create graph files with a custom script 
than to manually input and modify the network components in 
CytoScape (see Note 1).

This protocol also needs several external low- or high-throughput 
datasets for data filtering and establishment of pathway relation-
ships between the pair of chaperones in a two-component func-
tional module. The interaction database BioGRID (8) provides 
manually curated known interactions from both low- and high-
throughput experiments. The MIPS proteins complex database (9) 
provides yet another source of documented interactions. Our 
protocol uses BioGRID interactions for calculation of enrichment 
of known interactions in the target dataset, and MIPS interactions 
are used as criteria for reliable interactions, which are typically 
obtained from low-throughput methods, such as immunoprecipi-
tation. Microarray datasets and KEGG pathway database (10) are 
used to establish a correlation between coexpression and pathway 
relationship. This correlation is the basis for inferring the pathway 
relationship between two chaperones in a functional module, as 
described below.

2. Programs and 
Data Sources
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Proteomics data are known to be noisy, with many false-positive 
interactions. It is, therefore, important to filter out these false posi-
tive interactions as much as possible. While proteomic interactions 
are often scored and ranked based on mass spectrometry database 
searches, comparison of the raw interactions obtained in proteomic 
studies with validated interactions from small-scale biochemical 
studies is also very important for data filtering. In our protocol, 
two datasets of such reliable interactions are used for this purpose.

The MIPS database (9) contains 215 well-established complexes 
curated from numerous biochemical publications. Although this 
dataset has not been updated for a few years (latest complexes were 
derived from a publication in the year 2004), it is still frequently 
used as a gold standard for protein–protein interactions. To use 
this database in data filtering, complexes are downloaded from the 
MIPS Web site, and protein–protein interactions are assigned to 
each pair of proteins found in a complex. This interaction list com-
prises a reference interaction set. The raw interactions from the 
TAP-tag pulldown experiments in which the interactors are identi-
fied by mass spectrometry are then screened for their existence in 
the reference interaction set from MIPS. The raw interactions are 
further grouped into bins of scores derived from the mass spec-
trometry experiments. Histograms of the frequency distribution of 
the bins of both the raw interactions and those found in the refer-
ence interaction list are plotted. One can determine the score cut-
off for reliable interactions in the raw data based on the score 
distribution for the reference interactions.

To further confirm the selection of score cutoff in the above 
procedure, the interactions selected from the above protocol can 
be compared to those from a curated interaction database. We use 
BioGRID (8) for this purpose. BioGRID documents published 
interactions from both high- and low-throughput experiments. As 
with MIPS, we use only the low-throughput interactions, as they 
are deemed more reliable. BioGRID contains many more interac-
tions than MIPS, since it is continuously being updated. The prin-
ciple of testing for enrichment for known interactions in the 
chaperone interaction data is as follows. Given all interactors of the 
chaperones and the interactors for each chaperone from the filtered 
data, find the interactors already documented in BioGrid for a par-
ticular chaperone, and the interactors found in both filtered chap-
erone interactors and BioGrid. We will thus have four subsets:

	 1.	Filtered interactors of all chaperones (N).
	 2.	Filtered interactors of one chaperone (m).

3. Methods

3.1. Data Filtering

3.1.1. Filtering Interactions 
Using MIPS Complexes

3.1.2. Enrichment of 
Known Interactions Using 
BioGRID
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	 3.	BioGrid interactors present in filtered interactors of all 
chaperones (n).

	 4.	BioGrid interactors present in filtered interactors of one 
chaperone (k).

The fold of enrichment of BioGrid interactors that are also 
found in the filtered data is then:

	 ( / )
Enrichment _ fold .
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To test the significance of this enrichment, we assume a hyper-
geometric distribution:
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The p-value is calculated as the sum of f for all i ³ k, where i is 
the number of chaperone interactors that are found in BioGrid 
when m interactors are randomly drawn. A significant enrichment 
is when p < 0.05. Implementation of this algorithm can be found in 
the statistical package R using the function phyper, which is called 
with command line, phyper(k,n,N − n,m,lower.tail = FALSE). In 
plain language, it refers, for example, to the probability of getting 
k or more red balls by chance, when drawing m balls from a mix of 
n red balls and N − n blue balls.

If p < 0.05, we consider that the known interactors of a chaper-
one are enriched in the filtered dataset. Enrichment of known 
interactors for most of the chaperones would indicate the reliability 
of the filtered dataset.

Two or more chaperones that interact with a common protein 
either do so to work together to promote the proper folding of 
that protein or the common protein has several alternative (paral-
lel) folding pathways that the chaperones act on independently. We 
call the former scenario, the “single pathway model,” and we call 
the latter the “multiple pathways model” (Fig. 1). In either case, 
the chaperones are considered to form a functional module. We 
find that the number of chaperones in the module typically ranges 
from two to five (4).

As a first step to identify the functional chaperone modules, we 
count the shared protein interactors for each group of chaperones 

3.2. Identification  
of Functional 
Chaperone Modules

3.2.1. Determination  
of the Number of Shared 
Interactors Among a Group 
of Chaperones
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The numbers of shared interactors are stored in an array or 
written to a file for use in the next step.

Given the number of shared interactors for a group of chaperones 
of a specified size, the Z-score is calculated for each group as 
follows:

	 ,
x x

Z
−=
σ 	 (3)

where x is number of shared interactors for that group of chaper-
ones, x  is the average number of interactors for all chaperone 

groups, and s is the standard deviation of the number of interac-
tors, calculated as:
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Here, x and x  are defined as above, and n is the total number 
of chaperone groups. If there are a total of N chaperones, and if 
there are m chaperones in a given group, the calculation of n is as 
follows:
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3.2.2. Using Z-Score for 
Chaperone Module 
Identification

with varied sizes. The following pseudo-code finds modules of 
arbitrary size:
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Hence, the Z-score is calculated for each chaperone group. 
Chaperone modules are identified as those with Z-score ³ 2.

It is likely that for some well-studied chaperones, models of 
their networks have been previously proposed. For example, 
Young et al. (11) compiled a chaperone network with the com-
ponents HSP40, HSP70, HSP90, PFD, and CCT. In these net-
works, the nodes represent chaperones or chaperone complexes 
and the edges are flow of the protein substrates as they change 
conformation from newly translated peptides to the folded 
native state. Chaperone modules can be identified in these net-
works based on the above definition. Identifying chaperone 
modules from an expert annotated chaperone network is useful 
in validating modules obtained from the experimental high-
throughput data.

We identify functional modules from the chaperone network 
models in three steps. The first step is to identify all chaperones on 
pathways starting from the nascent peptide to the folded protein. 
The second step is to group the pathways, with each group con-
taining a specified number of pathways. In the third step, each 
pathway group is “cleaned” so that each chaperone appears only 
once.

Step 1:  Searching all chaperone pathways from the network
There are two algorithms in graph theory for a search of all path-
ways from a network, namely, breadth-first and depth-first search, 
respectively (12). Here, we list the pseudo-code for breadth-first 
algorithm as an example, starting from the list of edges in the 
model network, which is a directed acyclic graph (DAG). Note 
that there is a function expanding_path, which could be called 
iteratively.

3.2.3. Further Validation  
of Chaperone Modules: 
Retrieving Functional 
Modules from a Consensus 
Chaperone Network
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Step 2:  Grouping pathways
The algorithm and pseudo-code is very much the same as that used 
for identifying shared interactors among the chaperones. The m is 
the size of pathway group. For different m, the number of nested 
For-Endfor loops will be different.
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Step 3: Listing the chaperone modules
In this step, chaperone modules are listed by finding unique set of 
chaperones in each group from step 2. If a module occurs multiple 
times, only one is listed. This step is trivial, for example, a single 
function array_unique() in the programming language PHP is suf-
ficient for this task.

The purpose of comparing chaperone functional modules obtained 
from consensus models with those obtained from the new pro-
teomics data is to confirm known modules and predict new ones. 
The comparison is straightforward in terms of programming. In 
PHP, one can use the functions array_diff() and array_intersect().

Two chaperones in two-component functional modules might 
either act on target protein along a single pathway or multiple 
pathways or both (Fig. 1). Genes coding for proteins that function 
in the same pathway are likely coexpressed (13). Therefore, it is 
rational to estimate pathway relationships between a pair of chap-
erones in a functional module based on their gene coexpression 
data. To this end, gene coexpression results are combined with 
KEGG pathway information (14). It should be emphasized that 
this analysis is restricted to two-component chaperone modules.

The degree of gene coexpression is measured with Pearson correla-
tion coefficient (PCC). PCC is calculated using the formula:
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Many software packages such Microsoft Excel and R, imple-
ment the calculation. Use of R is potentially more efficient because 
the calculation can be parallelized on a computer cluster or multi-
core desktops. This is particularly useful if multiple gene expression 
datasets are to be analyzed. The R function for calculating PCC is 
cor(X, Y), where the parameters X and Y are vectors representing 
the expression values of two genes. N is the size of the vectors.

KEGG (Kyoto Encyclopedia of Genes and Genomes) (14) path-
ways are downloadable from http:// www.genome.jp/kegg/. The 
pathway list table maps relevant genes to a pathway(s). The path-
way relationships between each pair of genes are calculated. These 
relationships include what we term single pathway (two proteins 

3.2.4. Comparing Inferred 
Chaperone Modules with 
Consensus Modules

3.3. Establishing 
Pathway Relationship 
Between Two 
Chaperones in 
Two-Component 
Functional Modules 
Using Coexpression 
and KEGG Pathway 
Information

3.3.1. Measuring Gene 
Coexpression

3.3.2. KEGG Pathway 
Relationship of Proteins
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involved in one pathway), multiple pathway (two proteins involved 
in two pathways), and both single and multiple pathways. A pseudo-
code for this purpose is as follows:

The coexpression results (PCCs) are binned for all pairs of genes 
that are involved in the KEGG pathways. PCCs range from −1 to 1, 
and the bins start from −1 and are incremented 0.1 at a time. For 
each bin, the number of gene pairs functioning in single pathway, 
multiple pathways, or both are counted. The probability for each 
pathway relationship is calculated as the ratio of each number to 
the sum of three numbers in a bin. Using the expression data from 
Cho et al. (15) and Gasch et al. (16), it is found that the probabil-
ity of single pathway relationship increases with PCC, the probability 
of multiple pathways relationship decreases with increase in PCC, 
and the probability of involvement in both single and multiple 
pathways does not show as dramatic a change as for other relation-
ships, as expected. This association between gene coexpression and 
protein pathway relationships provides a reference for inferring the 
latter based on the former.

With the association of pathway relationship and coexpression cor-
relation as a reference, we are able to assign the probability of path-
way relationship to chaperone functional modules based on 
coexpression strength of two chaperones in the module. This 
involves the following two steps.

3.3.3. Combining Gene 
Coexpression Results  
with KEGG Pathway 
Relationship

3.3.4. Determining 
Probability of Pathway 
Relationship Between  
Two Chaperones in a 
Two-Component Functional 
Module
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Step 1:  Assign the probability for each pathway relationship based 
on gene coexpression data
As previously described, gene expression data are binned based on 
coexpression strength, and for each bin the probability for each 
pathway relationship is calculated. Given a pair of chaperones in a 
functional module together with their coexpression coefficient 
from an expression dataset, the probabilities of pathway relation-
ships are transferred to this pair of chaperones. If multiple gene 
expression datasets are available, then the coexpression data is inte-
grated as described in step 2 below.
Step 2:  Integration of the information from multiple expression 
datasets
A data integration method (Hon Nian Chua, National University 
of Singapore, personal communication) is used for combining the 
probabilities of pathway relationships from multiple expression 
datasets. This involves the following equation:

	 ( )
∈

= − −∏
,

1 1 ( ) ,
k Du v

P P k 	 (7)

where Du,v is the set of expression data that contains both chaper-
ones, P(k) is the probability that the two chaperones have a par-
ticular pathway relationship determined using KEGG pathways as 
training dataset, and P is the integrated probability that the two 
chaperones have a particular pathway relationship. Three probabil-
ities are then derived for single, multiple, or single and multiple 
(both) folding pathways. The final probabilities are calculated by 
normalization, that is, each probability is divided by the total of the 
three. The results of such an analysis for our chaperone proteomic 
data are shown in Fig. 2.

In conclusion, the protocol discussed here describes (1) how 
to filter large-scale interaction data, (2) how to identify chaperone 
functional modules from this large-scale interaction data, (3) how 
to compare modules obtained from the large-scale interaction data 
with modules derived from a consensus chaperone network, and 
(4) how to determine the probability of the two chaperones in a 
two-component chaperone module act along single, multiple, or 
both single and multiple folding pathways (Figs.  1 and 2). Our 
approach provides important insights into the organization of 
chaperone networks inside the cell and provides first hints into 
how cellular protein folding is regulated by molecular chaperones. 
Finally, the protocol we describe above can be used for any other 
biological system for which large-scale interaction data might be 
available.
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Fig. 2. Pathway relationship of two-component chaperone modules obtained from our 
yeast chaperone interaction proteomic data (4).
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	 1.	Cytoscape accepts a variety of data format, from simple sif 
format, which does not contain node and edge features, such 
as shape and color, to gml format which does contain node 
and edge features. A brief but complete gml file is shown 
below: 

4. Note
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			   This gml script describes an edge between two nodes. The 
node features, namely, label, position, size, shape, and color, 
and the edge features, namely, width and color, are defined. To 
create a complex network file with many nodes and edges, one 
can write a script in a language of his/her choice. The script 
reads the data file and writes a gml file. For example, if the inter-
actors shared between chaperones are to be visualized, chaper-
ones are depicted as nodes with different colors indicating the 
chaperone groups, and the edges represent shared interactors 
colored to indicate the number of shared interactors. The cre-
ated gml file can then be imported into CytoScape.
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