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AAA+ proteins: diversity in function, similarity
in structure
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Abstract
The AAA+ (ATPases associated with various cellular activities) superfamily of proteins represents a distinct
lineage of the larger class of P-loop NTPases. Members of this superfamily use the power of nucleotide bind-
ing and hydrolysis to direct molecular remodelling events. All AAA+ proteins share a common core architec-
ture, which, through various sequence and structural modifications, has been adapted for use in a remarkably
diverse range of functions. The following mini-review provides a concise description of the major structural
elements common to all AAA+ proteins in the context of their mechanistic roles. In addition, the evolutionary
and functional diversity of this superfamily is described on the basis of recent classification studies.

The P-loop NTPases
The energy obtained from the hydrolysis of nucleotides is
fundamental to a myriad of biological processes, and indeed to
life itself. Cells have evolved various mechanisms for harness-
ing this energy and directing it towards useful work. One class
of proteins using such a mechanism is the P-loop NTPases, an
abundant class of nucleotide binding/hydrolysing proteins,
which play critical roles in a vast array of cellular functions.

These proteins are found in all three major domains of
life, including the prokaryotic (i.e. organisms lacking a true
nucleus) Archaea and Bacteria, as well as the Eukarya (i.e.
eukaryotes, possessing a true nucleus and membrane-bound
organelles derived from bacterial endosymbionts) [1,2]. In
fact, roughly 5–10% of proteins encoded by fully sequenced
prokaryotic and eukaryotic genomes completed thus far
are predicted to contain a P-loop NTPase domain [3]. P-
loop NTPases are defined by the presence of the nomi-
nal P-loop, a conserved nucleotide phosphate-binding motif,
also referred to as the Walker A motif (GX4GK[S/T]), and
a second, more variable region, called the Walker B motif
(����[D/E], where � is a hydrophobic residue). Both
the Walker A and Walker B motifs are important for bind-
ing/interaction with nucleotides, which are typically ATP or
GTP, and Mg2+ [4–6]. The P-loop NTPases share a common
αβα core domain structure, consisting of a parallel β-sheet
sandwiched between two sets of α-helices [7]. Although not
universally true, P-loop NTPases most commonly catalyse
the hydrolysis of the β − γ phosphate bond of the bound
nucleotide, utilizing the energy released from this reaction to
direct conformational changes in other molecules [8].
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The P-loop NTPases can be divided into two major
structural groups, the KG (kinase-GTPase) group and the
ASCE (additional strand catalytic E) group. These groups and
representative members are shown in Figure 1. The core struc-
tural features for each group are also shown. The KG group is
characterized by the adjacency of the Walker B strand and the
strand connected to the P-loop, with a characteristic strand
order of 54132 in their core β-sheet (Figure 1, lower left-hand
panel). The ASCE group contains an additional strand inser-
ted between the strand connected to the P-loop strand and the
Walker B strand, giving a core β-sheet strand order of 51432,
as well as a catalytically important conserved glutamate
residue within the Walker B motif (Figure 1, lower right-hand
panel) [9]. Within these two groups, the P-loop NTPases can
be divided into numerous distinct lineages (Figure 1) [8–10].
One of the major P-loop lineages, and the main focus of this
mini-review, is the AAA+ (ATPase associated with various
associated activities) proteins of the ASCE structural group.

The AAA+ proteins

General structure
AAA stands for ‘ATPases associated with various cellular
activities’, and, as the name implies, was first used to
describe a class of ATP-hydrolysing enzymes with a range
of functional roles [11]. Among other processes, AAA
proteins were found to be involved in protein degradation,
vesicular fusion, peroxisome biogenesis and the assembly
of membrane complexes [2]. Subsequent work showed
that AAA proteins are actually a subset of a much larger
superfamily of ATPases, now referred to as AAA+ [12].

In addition to the conserved αβα core domain structure,
and the Walker A and B motifs of the P-loop NTPases,
the AAA+ proteins contain a number of other conserved
distinguishing features. All these features are found within
a 200–250-amino-acid region referred to as the AAA+
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Figure 1 P-loop NTPases

Major divisions and representative structures from the P-loop NTPase KG and ASCE structural groups. The top two panels

show the two major structural groups (KG and ASCE) and major classes/superfamilies which lie within them. The lower

left- and right-hand panels show representative NTPase core domains of the KG and ASCE groups respectively. β-Strands

are represented by arrows and are shown in green. The strands of the conserved ‘core’ β-sheet structure are numbered

in order of occurrence in the primary sequence. Helices are represented by cylinders and are shown in grey. The Walker

A and B motifs are shown in red and blue respectively. Lower left: P-loop NTPase core domain from Thermus aquaticus

Ffh protein (KG structural group) [42]. Lower right: P-loop NTPase core domain from Saccharomyces cerevisiae RFC1 clamp

loader protein (ASCE structural group) [14]. The additional strand between the Walker A- and Walker B-associated β-strands

is marked with an asterisk (*). The position of the catalytic glutamic acid residue is shown in pink.

‘module’ [12,13]. Figure 2 shows a representative of an
AAA+ module from the RFC1 (replication factor C1)
clamp loader protein of Saccharomyces cerevisiae [14]. The
structure of the AAA+ module of this protein represents
the ‘basic’ core structure of AAA+ modules without inser-
tions or modifications. Various major features are marked in
Figure 2. Like many other members of the ASCE structural
group, AAA+ proteins function as oligomeric rings, with a
hexameric arrangement being the most common [2].

Notably, the AAA+ module consists of two discrete
domains. The first corresponds to the P-loop NTPase
αβα nucleotide-binding core domain, and consists of a
five-stranded parallel β-sheet, with a 51432 strand order,
sandwiched between α-helices (Figure 2A, green) [13]. The
second domain, unique to AAA+ proteins, consists of a
bundle of four α-helices (Figure 2A, purple). The sequence
of this domain is much less conserved across AAA+ proteins
than the nucleotide-binding domain, but all appear to share a
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Figure 2 Structure of the AAA+ module of Saccharomyces cerevisiae RFC1

(A) Overall view of the RFC1 AAA+ module from Saccharomyces cerevisiae RFC1 [14]. The nucleotide-binding domain is

shown in green. The C-terminal α-helical domain is shown in purple. β-Strands and α-helices are labelled (β1–β5 and

α0–α8 respectively). (B) Overall view of the AAA+ module showing major motifs (coloured and labelled as described in the

inset) and bound adenosine 5′-[γ -thio]triphosphate (ATPγ S; yellow sticks) and Mg2+ (grey sphere). (C) Close-up view of

nucleotide-binding/catalytic site. Side chains of key residues are labelled and coloured as described in the inset.

common core fold consisting of two helical hairpins arranged
in a left-handed superhelical structure [13,15]. A nucleotide
bound by the αβα domain is sandwiched between these two
domains. In oligomeric structures, the nucleotide also faces
the αβα domain of the neighbouring subunit [13,16], and,
hence, in some AAA+ proteins, the nucleotide is required
for proper oligomerization.

The AAA+ module contains several signature motifs. The
first motif is Box II (Figures 2B and 2C, pink), which maps
to a putative α-helical structure in an extended N-terminal
region (α0), and is a defining feature of the AAA+ protein
class [2,12]. Residues in this motif, on the basis of their
proximity to the bound nucleotide, have been proposed to
play a role in adenine recognition although, notably, this
motif is not always conserved [12].

The next conserved feature is the Walker A motif (Fig-
ures 2B and 2C, red) which maps to the region between strand
β1 and helix α1. The conserved lysine and threonine/serine
residues of this motif are proposed to be important in binding
the β- and γ -phosphates of bound ATP substrate and Mg2+

ion respectively. The lysine residue is also believed to be im-
portant in maintaining the proper conformation of the P-loop

via hydrogen-bonding with the main-chain oxygens of the
loop [4,5]. The Walker A motif is followed by two less con-
served motifs, referred to as Box IV and IV’ (not shown) [12].

The Walker B motif is associated with the β3 strand
(Figures 2B and 2C, blue) and has the consensus sequence
����DE, including the conserved catalytic glutamate
residue characteristic of the ASCE group of P-loop NTPases.
The carboxy group of this residue is believed to act as a
catalytic base, abstracting a proton from a molecule of
water, thereby priming it for a nucleophilic attack on the
γ -phosphate of bound ATP [9,13]. The conserved aspartate
residue is involved in the co-ordination of the Mg2+ ion [4,6].

Immediately after the Walker B motif is the Sensor 1
motif present on strand β4 (Figures 2B and 2C, cyan). The
Sensor 1 motif contains a conserved polar residue, which is
asparagine in the RFC1 structure, although threonine, serine
or histidine is sometimes observed. This residue has been
shown to be functionally important, and may interact with
the γ -phosphate of ATP either directly, potentially acting as a
‘sensor’ of nucleotide binding/hydrolysis, or indirectly via
awatermolecule,possiblyhelpingto properly orient the water
molecule for nucleophilic attack on the substrate [17,18]. It is
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Figure 3 Classification of AAA+ proteins

Division of the AAA+ proteins into groups (grey boxes), clades (unfilled boxes) and families (numbered). The STAND group is

shown in a grey rounded rectangle to reflect uncertainty as to its classification within the AAA+ lineage. The Figure is based

upon data from two published AAA+ classification efforts performed using both sequence and structural information [2,15].

For each family, the major known or putative target(s) are listed in square brackets beside the family name: P, protein; N,

nucleic acid; S, small molecule; U, unknown.

important to note that the Sensor 1 motif is not strictly unique
to the AAA+ proteins, but is also found in certain other
divisions of the ASCE structural class of P-loop NTPases [2].

After Sensor 1 is Box VII which contains a conserved
arginine residue that is near the N-terminus of strand β5
(Figure 2B, brown) [12]. In most AAA+ proteins, this
residue is oriented towards the ATP-containing active site of
a neighbouring subunit and is proposed to act as an ‘arginine

finger’, interacting with the γ -phosphate of the nucleotide in
the neighbouring subunit. The arginine finger has been shown
to be necessary for ATP hydrolysis by playing an important
role in intersubunit communication/catalysis [17,19–21].
This arginine finger is also found in some other ASCE group
members, particularly those which form rings [22].

Box VII is followed by two subtle motifs, Box VII’ and
VII’’ (not shown), and then the Sensor 2 motif (Figures 2B
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and 2C, orange). All of these motifs are in the second helical
bundle domain of the AAA+ module. The Sensor 2 motif,
which is on the third helix of the second domain (α7),
contains a conserved arginine residue that interacts with the
γ -phosphate of the bound ATP substrate. The function of
this arginine residue appears to be somewhat divergent, and
it has been implicated in a variety of roles including ATP
binding, hydrolysis, sensing and intersubunit interaction. It
is also believed to be involved in mediating movement of the
C-domain relative to the N-domain of the AAA+ module
during ATP hydrolysis [12,13,16]. Motion between these
two domains is proposed to be important in the generation
of mechanical force which affects substrate molecules and
functional partners [13].

Evolution, classification, and diverse functions of
AAA+ proteins
Sequence and structural analysis indicate that the AAA+
superfamily is very ancient and underwent considerable
divergence before the appearance of the last common ancestor
of the Eukarya, Bacteria and Archaea domains of life [2,12].
Various phylogenetic studies using sequence and structural
information have shown that the AAA+ superfamily can be
divided into numerous smaller families [2,12,15,23,24].

Figure 3 shows some of the major groups, clades and
families of AAA+ proteins, and represents an attempt to
integrate the results of two classification studies [2,15] with
the inclusion of new families and reassignment of certain
families in accordance with the more recent work [15].
The major groups are the extended AAA group, the HEC
(helicases and clamp loaders) group, the PACTT (protease,
chelatase, transcriptional activators and transport) group, the
ExeA group and the STAND (signal transduction ATPases
with numerous domains) group. The STAND group is
shown in a grey rounded rectangle due to uncertainty as to
its classification within the AAA+ lineage [8,15].

It is clear from these studies, and the work of others, that
the AAA+ superfamily has undergone a remarkable level
of diversification. A large number of families has evolved,
each recognizing their own unique substrates and interaction
partners, and playing a role in distinct cellular processes.
For instance, within the extended AAA group alone,
AAA+ families are involved in diverse processes including
protein unfolding and degradation (FtsH, proteasomal
ATPases, ClpA) [25–27], protein disaggregation (ClpB)
[28], microtubule disassembly (katanin) [29,30], membrane
fusion [NSF (N-ethylmaleimide-sensitive factor)] [31,32],
the ubiquitin system [CDC48 (cell division cycle 48)]
[33], peroxisome biogenesis (Pex1/6) [34,35], cytochrome
assembly (Bsc1p) [36,37], regulation of enzymatic activity
(Rubisco activase) [38], helicase activity (Rvb, viral helicases)
[39,40] and bacterial sporulation (SpoVK) [41].

The functional diversity of the AAA+ superfamily has
been made possible through modification and adaptation of
the core AAA+ architecture, via the introduction of new
domains and motifs, creating an array of molecular machines

capable of harnessing the power of nucleotide binding and
hydrolysis for use in the remodelling of a wide range of
substrates including proteins, nucleic acids and even, in the
case of the chelatase family of the PACTT group, small
molecules. Thus the AAA+ module appears to represent
a remarkably adaptable piece of ‘molecular engineering’,
which Nature has adopted for a wide-ranging use.

Final thoughts
Although an extensive amount of research has been
performed on members of the AAA+ superfamily, there
are still some families about which we know very little. In
addition, our understanding of the underlying mechanisms
employed by various AAA+ families is limited at best.
Obtaining a thorough understanding of the role of these
different families and the fundamental differences and
commonalities between the mechanisms they employ is
essential for helping us develop an integrated view of AAA+
systems and a greater comprehension of the fundamental
workings of these molecular machines which are so crucial
to life. The future of AAA+ research promises to be exciting
and highly rewarding, and will provide us with invaluable
information about a host of biological systems.
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